Tech Briefs

The capture envelope for this system is approximated by a 5-in. (12.7-cm) cube.

A prototype system for docking a miniature spacecraft with a larger spacecraft has been developed by engineers at the Johnson Space Center. Engineers working on Mini AERCam, a free-flying robotic camera, needed to find a way to successfully dock and undock their miniature spacecraft to refuel the propulsion and recharge the batteries. The subsystems developed (see figure) include (1) a docking port, designed for the larger spacecraft, which contains an electromagnet, a ball lock mechanism, and a service probe; and (2) a docking cluster, designed for the smaller spacecraft, which contains either a permanent magnet or an electromagnet.

The Magnetic Capture Mechanism includes a docking cluster on the top and a docking port on the bottom.
A typical docking operation begins with the docking spacecraft maneuvering into position near the docking port on the parent vehicle. The electromagnet(s) are then turned on, and, if necessary, the docking spacecraft is then maneuvered within the capture envelope of the docking port. The capture envelope for this system is approximated by a 5-in. (12.7-cm) cube centered on the front of the docking-port electromagnet and within an angular misalignment of <30°. Thereafter, the magnetic forces draw the smaller spacecraft toward the larger one and this brings the spacecraft into approximate alignment prior to contact. Mechanical alignment guides provide the final rotational alignment into one of 12 positions. Once the docking vehicle has been captured magnetically in the docking port, the ball-lock mechanism is activated, which locks the two spacecraft together. At this point the electromagnet( s) are turned off, and the service probe extended if recharge and refueling are to be performed. Additionally, during undocking, the polarity of one electromagnet can be reversed to provide a gentle push to separate the two spacecraft. This system is currently being incorporated into the design of Mini AERCam vehicle.

This work was done by Nathan Howard of Johnson Space Center and Hai D. Nguyen of Lockheed Martin Corp. For further information, access This invention is owned by NASA, and a patent application has been filed. Inquiries concerning nonexclusive or exclusive license for its commercial development should be addressed to the Patent Counsel, Johnson Space Center, (281) 483-0837. Refer to MSC-23997.

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.