Steve Gaddis runs the newly created Game Changing Technology Development Program Office. Gaddis leads the program’s efforts to develop innovative technologies that will revolutionize space exploration.

NASA Tech Briefs: What are we talking about when we say “Game Changing Technology Development?”

Steve Gaddis: That’s a question that we get asked a lot. The program is one of ten programs within OCT, the Office of the Chief Technologist. In OCT, they have the Space Technology Program (STP), which is being managed by Mike Gazarik and James Reuther.

When we say “Game Changing Technology,” we’re looking for orders-of-magnitude impact in technology development. We’re looking for cross-cutting infusion technologies that can be used in more than one place. We’re looking for transformative technologies. We’re looking for aggressive schedules and short development cycles (two or three years); fifty percent improvement in performance; and fifty percent or more reduction in manufacturing costs or lead times.

We’re also trying to revolutionize the way we do business at NASA. A lot of times it takes several years to get something rolling at NASA. We want to be able to say, “This one’s not panning out. It’s not meeting the metrics,” so we pull the plug, if you will, and take that money and reinvest into another “new start.”

All of these align with agency priorities or any agency partners. We want to have a streamlined business model. We want to have accountability through what we call Continuation Reviews. Periodically through the year, the program steps in with our principal investigator, and we see: Are we really in the direction we want to go? Is the project making adequate progress? Is the technology maturation happening? So we have the ability to make those decisions somewhat quickly. And as you might suspect, we can have some breakthroughs in two or three years and have agreements with projects such as the Orion Capsule or the Space Launch System (SLS), or other government agencies like Air Force Research Laboratory (AFRL) to have onramps into some of their systems. In essence, we want to investigate approaches to revolutionizing space exploration.

NTB: You mentioned “pulling the plug.” What are the criteria for pulling the plug, or deciding that a project has run its course?

Gaddis: We’re a high risk/high payoff program. We come in with a pretty tall order. Someone says, “Hey, we can do this in two years. Here are the performance metrics and the key performance parameters. And here are the actual thresholds that we’re trying to meet.” So we’re monitoring progress.

Each one of our activities has an overseer, somebody we call the GCD [Game Changing Development] principal investigator (PI). It’s very analogous to a DARPA PM [Defense Advanced Research Project Agency Project Manager]. And this PI is monitoring the progress, and the certain Continuous Reviews. They step in and get the level of insight into that activity. They have to make a technological, strategic call, or weigh in on some of the programmatics. If these folks are on track to meeting their technical objectives, then we allow them to continue. If it looks like they’re just not going to get there, there’s no reason to say, “Ok, for the next two years, we’re going to let this run out.” We do an orderly shutdown of a month or so. All the participants understand that this is the governance model that we’re operating in. So we take those funds, and we already have a stack of potential “new start” activities that need investment.

A lot of times, with NASA, we let [projects] run four or five years, and there are termination liabilities, and it could take a long time to get out of something. That is not what the model is for the Game Changing Program.

NTB: What are your day-to-day responsibilities as leader in this office?

Gaddis: Currently, like any other NASA program, we go through the planning and program budget execution cycles. We meet to see what the technology horizon might look like, and what the future investments are, and we see the investments we’ve already made, and what their continuing needs might be.

We’re developing the portfolio for the program, so on a day-to-day basis, I’m meeting with these GCD PIs, and we’re talking about technology. We’re talking about new ideas. We’re talking about meeting with other organizations and how those meetings went with NRO [National Reconnaissance Office], and AFRL, and DARPA, and DOE [Department of Energy]. We have a lot of collaborative-type discussions and brainstorming sessions. We have a lot of reviews on how the projects are doing. We monitor those very closely on a monthly basis. We report to NASA headquarters on a quarterly basis, and we have a very large end of the year program review.

We currently have 7 PIs, and their technology expertise is quite a broad spectrum, from composites, nanotechnology, power systems, solar arrays, electric propulsion, manufacturing, and additive manufacture particularly. We’re looking at x-ray navigation, optical communication, and next-generation high-speed computing. We currently have about 30-something projects in the works that are fully funded. Two of those were not meeting their metrics, so we’ve pulled the plug on those and reinvested the funds. Right now, it’s looking very well and all running according to planned.

NTB: What do you think space flights of the future will look like? What kinds of new approaches do you think we’ll see?

Gaddis: Some of the new ideas that we’re currently working on, and some of those that are in the “new start” hopper, if you will, are using composite cryogenic tanks that will reduce the weight by 50 percent for some system like the SLS. We’re also looking at power-beaming technology: having a ground infrastructure with a large laser that would shoot a high-energy beam to a capsule that could go to low-Earth orbit. We’re also looking at cheap ways to get to low-Earth orbit, and put large structures together in a cheap fashion. We’re looking to build some of that hardware in orbit, with additive manufacturing: Build what you need, where you need it. We’re looking at cryogenic propellant, depots, and lots of different architectures of human spaceflight, robotic investigations, and explorations. The field is wide open.

NTB: Is there a challenge there with such a wide open field of technologies, in determining needs and prioritizing different projects?

Gaddis: We struggle with some of those, but it’s a good kind of struggle. Always, when you have a lot innovative people, and our country is full of such smart individuals, it’s difficult to determine what we can invest in, and when we should invest in it. Is it the right time for it? Does it fit well with the current agency priorities? For some technologies, it’s just not their time, but they’re still worthy of investment. Someone else will just have to make the investment. It is a struggle for us to rank these different technologies and to help prioritize them. We’d like to just be able to fund them all.

NTB: What are the start-to-finish steps when you’re bringing a Game Changing Technology into the fold? I imagine it starts with ground testing and other processes?

Gaddis: Yes there is, and what we like to look at is a technology that has a technology-readiness level of around 3, which means it’s not just an idea, but there’s some proof in the pudding, if you’ll let me say it that way: There’s been a lot of benchwork, there’s been some analysis, there’s been peer review, it looks like it has sound physics, and it looks like there has been some sort of subscale demonstration that proves that the technology is viable and feasible.

As DARPA has DARPA PMs, we have GCD PIs. The front door for technology investment is our PIs. You can go to our technical website: gameon.nasa.gov. You can see which PI and technology focus might lend to your needs. You begin a dialogue with them, have several discussions, and look at data. If a PI decides that this is something that’s worthy of consideration, and it’s the right time for consideration, and it fits within our portfolio and our priorities, this PI would then bring a “new start” proposal to our board, and the board would review it. The board has expertise from across the agency. It has the program leadership and headquarters leadership as well. There’s several of us that review these potential “new starts.” We look at certain criteria: Is it really game changing? Why should we invest in this now? What are they trying to do that’s different than what’s been done in the past? How much is it going to cost? What difference will it make if we succeed?

One of the major questions that we ask is: Can it transition? Is there some end-item customer that would be interested in this technology within NASA or another federal agency? We don’t go forward, unless there’s somebody interested in using this. Then, we get some sort of formal agreement with this potential customer that if we meet these specifications, they’ll take that design and go forward with it. That’s the “new start.” It gets approved. It gets off and running in a formulation of normally 6-12 months, and if they meet their performance metrics during formulation, there will be a review to let it go into implementation, which could be 2-3 years, working very closely with the customer and headquarters for approval. We have these continuation reviews, and the PI monitors those, and hopefully the end of the story is that they have this formal agreement with the customer, that they meet all the metrics, and we do a technology infusion, we do a hand-off, and some other NASA directorate or program like TDM, (Technology Demonstration Missions), Human Exploration and Operations Mission Directorate (HEOMD), or Science Mission Directorate (SMD), takes it on, and you see the technology was developed and used, and doesn’t go on a shelf somewhere.

NTB: Which one of these Game-Changing Technologies are ready to go, and we’re ready to see in action?

Gaddis: There are hypersonic inflatable aerodynamic decelerators, and we have a demonstration that’s going to be out of Wallops [Flight Facility] this month [July, at the time of this interview]. It’s going to be suborbital, but we’re demonstrating this inflation technology and this certain material that can be used to do some sort of aerodynamic decelerations on a planet with atmospheres, say Mars or maybe Venus.

We’re also within about 8 months of demonstrating a 5.5-meter composite cryogenic tank. Most of these tanks, for folks that are in that field, know that a tank of that size would have to be cured in a huge autoclave. We’re doing all this work out of autoclave. It’ll be a huge impact not only for NASA, but for even companies like Boeing, SpaceX, or Orbital.

We’re also developing legs for Robonaut on ISS. Most folks know that Robonaut is up on [the International Space] Station, and Robonaut did some sign language a couple months ago, back down to kids here on Earth. But Robonaut needs its legs, and we should have those legs probably within the next 12 months. Those are some activities that are near-term for Game Changing.

NTB: You mentioned Airbus and Boeing. How important is private industry to making this all happen?

Gaddis: We want to partner with private industry. In the commercial space, we’re looking at how a lot of our technologies can help them. It’s very important to us that the work that we’re doing can be disseminated to all sectors in the aerospace field. It’s part of the vision of our chief technologist, Mason Peck, that we properly disseminate our findings so that folks in the aerospace field – whether it’s a Lockheed or a Boeing or a SpaceX or a Sierra Nevada, or some smaller corporation that’s interested in getting into the field – can use this information and apply it to what they have going on in their companies. We talk to private industry on a regular basis, and we team up with them wherever it makes sense. A lot of times they’ll use their own internal research and development funds, and we have a cost-share activity with them. I think it would be safe to say that we work very closely with industry.

NTB: To dig into your bio a bit: You were originally the deputy chief of the Launch Abort System.

Gaddis: I spent a year at Headquarters being the program executive in OCT for Game Changing. Before that, I spent five years being the deputy chief of the Launch Abort System within the Orion project, the former Constellation Program, and we had a major success on May 6 several years ago with the Pad Abort 1 [Orion Test]. We demonstrated a new launch abort system. It was picture perfect and worked just like it should.

Before that, I was working on station to develop a couple of modules, as program manager for developments and modules, for Station. I worked probably 10 years of my career on developing advanced technologies for the space shuttle main engines, and I did some advanced technology work with Jupiter Icy Moons Orbiter (JIMO), and I was the Marshall lead for that. I’ve had a lot of fun in my career, but I have to say, I’m having a lot of fun right now, doing all this technology work.

NTB: Are there any kinds of adjustments that you’ve had to make in this new role?

Gaddis: Yeah, but the adjustments are not bad. I came from human spaceflight, where I spent the majority of my career, so I haven’t worked very closely with aeronautics or the science mission directorate, or even lower-tier technology development. With human spaceflight, we still do some technology development, but it’s much closer to maturation for our own purposes. Some of the adjustments: I work very closely with researchers and scientists, and chief technologists across the agency and other government agencies. They’re very creative individuals, and sometimes they push against much needed processes, but it’s a healthy tension to get things done. It hasn’t been negative. I’ve perceived it all as very positive. It’s been a great learning experience for me.

NTB: Are there any other challenges in this role, and with Game Changing technologies?

Gaddis: Two challenges jump out. One, the program’s not very old, and we’ve been chartered to do things differently, to be “game changing,” if you will: to be DARPA-like, some folks have said. What they really asked us to do was to be the premier program or organization within OCT or within the agency to rapidly advance technology from concept to demonstration.

We had to change our leadership model, our governance model, to try to impact how we do business. It’s been a challenge. NASA has a culture, and each one of the centers have somewhat of their own unique cultures, and it’s been a challenge trying to convince folks that “Hey, we don’t have to have a ten year investment plan. We can do these things in short development cycles and focus on critical technologies.” It’s been a challenge to convince some folks to do that, but I would say that the folks at NASA want to do the right thing, and they want to do great work that has an impact, so folks have gotten on board. We’ve still got a challenge ahead of us to convince not only our key stakeholders, but our field centers who are doing the hands on work.

The next challenge is probably neck and neck with that one: there’s never enough funding to support all of the good work, and it’s a difficult task to prioritize the work. You want to do most of it, if not all of it. It’s hard to turn folks down. Lots of smart people are just coming out of the woodwork with great ideas, inside and outside the agency. We have to find some way to prioritize them and fund what we can with the limited budget that we have.

NTB: What is your favorite part of the job?

Gaddis: My favorite part of the job is working with a vast group of people. The people really are the top asset that NASA has. We have lots of creative people, and they just want opportunities. I enjoy working with the industry and the university folks, the headquarters, and the field centers. I enjoy working with the researchers, the scientists, and the technologists, and it gives me great pleasure to fund a lot of the work that they’re doing, and see what we would call true game-changing technologies come out of the endeavor.