Home

30 Years of Test & Measurement

In celebration of the 30th Anniversary of NASA Tech Briefs, our features in 2006 highlight a different technology category each month, tracing the past 30 years of the technology, and continuing with a glimpse into the future of where the technology is headed. Along the way, we include insights from industry leaders on the past, present, and future of each technology. This month, we take a look at the past 30 years of Test & Measurement.

As is the case with many of the other industries we’re covering this year in our anniversary features, test and measurement was profoundly affected by the introduction of the personal computer (PC) in the early 1980s. Prior to that, test equipment consisted of large, bulky meters and boxes, as well as mammoth standalone automated test systems cobbled together with a variety of analog instruments and cables.

The evolution of the PC shares a common path with that of instrument controllers, and according to Dr. James Truchard, president, CEO, and cofounder of National Instruments, the PC proved to be an ideal platform for instrumentation control. With the PC, said Truchard, “There was a tremendous amount of labor savings, we could be more accurate in moving the data from the instrument to the PC, we could compare theoretical results with actual measurements, and we could create archives of the results for later retrieval.”

The additional functionality that PCs provided enabled networked measurements. “This had the effect of shifting the design emphasis away from the front panel only, to a product where the PC interface was also important, and how the instrument cooperated with a PC,” explained Linda Rae, executive vice president and chief operating officer of Keithley Instruments. “Users could now easily move test data back and forth between standalone instruments or between instruments in a rack, something that wasn’t possible before the rise of the PC and improved networking capabilities,” Rae added.

In 1976, a new standard for instrumentation interface emerged. Called GPIB, the technology enabled instrument controllers to communicate with test equipment. “Gradually,” said John Stratton, aerospace/defense program manager for Agilent Technologies, “PCs equipped with plug-in cards for both Ethernet and GPIB began to replace specialty instrument controllers.” Up until that point, he added, “automated testtremendous amount of labor savings, we could be more accurate in moving the data from the instrument to the PC, we could compare theoretical results with actual measurements, and we could create archives of the results for later retrieval.”

The additional functionality that PCs provided enabled networked measurements. “This had the effect of shifting the design emphasis away from the front panel only, to a product where the PC interface was also important, and how the instrument cooperated with a PC,” explained Linda Rae, executive vice president and chief operating officer of Keithley Instruments. “Users could now easily move test data back and forth between standalone instruments or between instruments in a rack, something that wasn’t possible before the rise of the PC and improved networking capabilities,” Rae added.

In 1976, a new standard for instrumentation interface emerged. Called GPIB, the technology enabled instrument controllers to communicate with test equipment. “Gradually,” said John Stratton, aerospace/defense program manager for Agilent Technologies, “PCs equipped with plug-in cards for both Ethernet and GPIB began to replace specialty instrument controllers.” Up until that point, he added, “automated test systems were isolated islands of technology.”

Two other trends in the evolution of the PC also affected measurement instrumentation: increased computing power, and lower prices. According to Rae, “The availability of powerful microprocessors, memory chips, and digital signal processors (DSPs), combined with computing power, enabled customers to get more capability at a lower price. These changes continue to be felt down to the present day.”