Array Measures Vibrations Across Skin

In the near future, a buzz in your belt or a pulse from your jacket may give you instructions on how to navigate your surroundings. Think of it as tactile Morse code: vibrations from a wearable, GPS-linked device that tell you to turn right or left, or stop, depending on the pattern of pulses you feel. Such a device could free drivers from having to look at maps, and could also serve as a tactile guide for the visually and hearing impaired.
Lynette Jones, a senior research scientist in MIT’s Department of Mechanical Engineering, has built an array that precisely tracks a motor’s vibrations through skin in three dimensions. The array consists of eight miniature accelerometers and a single pancake motor — a type of vibrating motor used in cellphones. She used the array to measure motor vibrations in three locations: the palm of the hand, the forearm and the thigh.

Jones also gauged participants’ perception of vibrations, fitting them with a 3-by-3 array of pancake motors in these three locations on the body. While skin generally stopped vibrating 8 millimeters from the source, most people continued to perceive the vibrations as far away as 24 millimeters.

Jones sees promising applications for wearable tactile displays. In addition to helping drivers navigate, she says tactile stimuli may direct firefighters through burning buildings, or emergency workers through disaster sites. In more mundane scenarios, she says tactile displays may help joggers traverse an unfamiliar city, taking directions from a buzzing wristband, instead of having to look at a smartphone.

Using data from their mechanical and perceptual experiments, Jones’ group is designing arrays that can be worn across the back and around the wrist, and is investigating various ways to present vibrations.


Also: Learn about a Silicon Heat Pipe Array.

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.