Home

The GigE Vision® Interface Standard: Transforming Medical Imaging

Transferring Images Reliably

Patients must not be exposed twice to obtain an image, and physicians must work from accurate, real-time images. Although data packets are unlikely to go missing or to arrive out of order in a properly architected network, the GigE Vision standard includes a packet resend mechanism that ensures such an occurrence would not cause data loss. Also, GigE Vision is built upon known, standard technologies (Ethernet, IP, UDP) that have been widely used for decades, and which have been heavily invested in and developed by giants like Intel and Cisco. GigE has been in use since 1999, while 10 GigE was ratified by the IEEE in 2003 and has a decade of widespread acceptance and development behind it.

Accommodating Sterile Rooms

altSterilization requirements make it risky and sometimes impossible to introduce new systems into medical environments. Video-over-Ethernet resolves this challenge through distance. With a reach of 100 meters over copper wire (1 GigE) or even further over fiber (1 or 10 GigE), GigE Vision systems can be located and serviced outside of sterile rooms, as Figure 1 illustrates. Each network element can also be located in the appropriate department, providing more flexibility in system design.

Minimizing System Cost

The GigE Vision standard helps lower the costs of new systems and system upgrades:

• The data is transmitted using GigE network interface cards (NICs), which are standard on PCs.
• Ethernet is a standards-compliant solution already in place in healthcare facilities.
• For GigE networks, standard, affordable Cat 5/6 cabling is used. For 10 GigE networks, cost-effective GigE fiber connections are most often used (providing electrical isolation), and Cat 6A cabling can also be used up to 100 meters.
• System designers avoid the risk of single- source or proprietary architectures because the GigE Vision standard is an open, global standard that ensures seamless interoperability between equipment designed by different manufacturers.
• Multiple sensors or channels of video can be aggregated into a single network link. Multiple cables can be replaced with a single connection, and a number of sensors can be connected over the same link.

Maximizing System Design Life

Medical imaging systems are substantial investments, both in R&D effort as well as capital cost. To extend the lifespan of these valuable systems, the use of a GigE Vision interface enables designers to leave a system’s imaging component as-is while extending cable distances, eliminating frame grabbers, and integrating more flexible connectors and cables. This is possible with GigE Vision products available today that employ one or more image sources using Camera Link® interfaces and transmit them over GigE. Alternatively, a manufacturer could simply change the interface of a medical imaging product from a proprietary interface to GigE Vision by means of a small adapter board.

Future Clinical Applications of GigE Vision

GigE Vision provides the technological platform for networked video suitable for use in medical environments. In a networked video architecture, all elements (image sensors, cameras, computers, video receivers, video servers, control units, and displays) are connected to each other. With this streamlined approach, every component uses the same standard framework to transmit or receive video and control data. While GigE Vision over GigE is already commonly used in medical environments, the growing adoption of GigE Vision over 10 GigE will open up further opportunities to enhance medical imaging applications and patient care, as the following examples illustrate:

Digital Fluoroscopy

Advances in X-ray imaging, such as image intensifiers and flat-panel digital detectors, are reducing the radiation dose to which patients are exposed (see Figure 2). This is especially beneficial in fluoroscopy, which provides physicians with real-time X-ray images of a patient’s anatomy by using radiation exposure over time. The process, however, results in a greater cumulative radiation exposure.

Innovative new fluoroscopy systems minimize the patient’s exposure by using multiple moving X-ray sources to irradiate tissue from numerous incremental angles in just seconds. To do so using traditional vision interfaces and connections, though, would be uneconomical and cumbersome.

Using GigE Vision over 10 GigE, the multi-source image data can be transmitted over Ethernet to a processor to generate 3D images on a CMOS X-ray detector. If required, a systems integrator could add an additional GigE Vision compliant X-ray detector from another manufacturer to further increase the utility of the system (see Figure 3). Because all imaging components and software are GigE Vision compliant, the integration is very simple.

MRI

MRI machines output substantial amounts of video data. Today, that data is transferred using proprietary interfaces that can be expensive to maintain and costly for R&D teams to develop in the first place. GigE Vision over 10 GigE offers a solution to these challenges and may make magnetic resonance imaging more affordable, easier to maintain, and more widely available in the near future.

Tomorrow’s Hospitals

As medical technologies grow in sophistication, the bandwidth, resolutions, and frame rates required for imaging will grow in parallel. Within three to five years the average radiation oncology department, for example, will experience exponential growth in the size, complexity, and volume of medical images, as illustrated in Figure 4. The increase is due, in part, to the success of image-guided oncology programs, which generate new images at each step in the treatment process — diagnosis, staging, planning, verification, setup, response, and follow-up.

As these kinds of medical imaging systems continue to evolve, real-time video networks will be important technology elements for the medical community as it expands into new areas of imageguided surgery and diagnostics.

This article was written by John Phillips, Senior Product Manager at Pleora Technologies (Kanata, ON, Canada). For more information, visit http://info.hotims.com/40437-141.