Tech Briefs

Stability-Augmentation Devices for Miniature Aircraft

Passive mechanical devices help miniature aircraft fly in adverse weather.

Non-aerodynamic mechanical devices are under consideration as means to augment the stability of miniature autonomous and remotely controlled aircraft. Such aircraft can be used for diverse purposes, including military reconnaissance, radio communications, and safety-related monitoring of wide areas. The need for stability-augmentation devices arises because adverse meteorological conditions generally affect smaller aircraft more strongly than they affect larger aircraft: Miniature aircraft often become uncontrollable under conditions that would not be considered severe enough to warrant grounding of larger aircraft. The need for the stability augmentation devices to be non-aerodynamic arises because there is no known way to create controlled aerodynamic forces sufficient to counteract the uncontrollable meteorological forces on miniature aircraft.

A stability-augmentation device of the type under consideration includes a mass pod (a counterweight) at the outer end of a telescoping shaft, plus associated equipment to support the operation of the aircraft. The telescoping shaft and mass pod are stowed in the rear of the aircraft. When deployed, they extend below the aircraft. Optionally, an antenna for radio communication can be integrated into the shaft.

At the time of writing this article, the deployment of the telescoping shaft and mass pod was characterized as passive and automatic, but information about the deployment mechanism(s) was not available. The feasibility of this stability-augmentation concept was demonstrated in flights of hand-launched prototype aircraft.

This work was done by Richard M. Wood of Langley Research Center. For further information, contact the Intellectual Property Team at (757) 864-3521. LAR-16456-1