Dr. Adrian Ponce joined JPL/NASA as a postdoctoral scholar in 2000 after receiving a Ph.D. in chemistry from Caltech. In 2002 he invented the Anthrax Smoke Detector, a device capable of detecting the presence of anthrax in less than fifteen minutes. He recently developed a new technology called Germinable Endospore Biodosimetry, which not only rapidly detects the presence of bacterial spores on spacecraft but also determines whether they are alive or dead. Dr. Ponce currently serves as Deputy Manager of NASA JPL’s Planetary Science Section, and heads up the Ponce Research Group, an interdisciplinary team made up of researchers from JPL and California Institute of Technology.

NASA Tech Briefs: Dr. Ponce, how long have you been with NASA and what prompted you to pursue a career with them as opposed to, say, a pharmaceutical firm or a commercial research laboratory?

Dr. Adrian Ponce: Well, I’ve been with NASA since 2000 when I started as a postdoc after my graduate work at Caltech. I had always been interested in, and fascinated by, space exploration, you know, looking at books and things as a kid. At some point in my graduate work at Caltech, I saw a lecture on life in extreme environments and astrobiology, and I had been working in the subbasement of a laser lab for three or four years at that time and really got to see that big, shiny object in the sky we call the Sun, and doing research out in the field was fascinating to me. So, I saw an opportunity – an advertisement for a postdoc – and I applied and got into the Jet Propulsion Laboratory starting around January 2000.

Compared to pharmaceuticals and other commercial research laboratories, I guess NASA strikes an interesting balance between application and academic research and that’s, I think, what drew me to them – the combination of space exploration and working in the research environment. I think that was what ultimately caught my interest.

NTB: Back in 2002 you invented something called an Anthrax Smoke Detector. Tell us about that project.

Dr. Ponce: Shortly after I got started at JPL, I learned about this issue of bacterial spores and planetary protection – how do we make sure that spacecraft are clean before we send them to Mars or other places? That’s what planetary protection is all about. I was introduced to this question and bacterial spores and started working on how do we detect spores quicker, with a better way. Being a chemist, I came up with a way.

Shortly after I’d started working on that project for planetary protection, 9-11 happened and, subsequently, the anthrax attacks happened shortly thereafter. I realized right then, basically, that the technology that I was developing for detecting spores for planetary protection could easily be coupled with an air sampler so that we could essentially build what we call the Anthrax Smoke Detector.

NTB: You recently developed a new technology called Germinable Endospore Biodosimetry that can detect the presence of bacterial endospores. How does this new technology work?

Dr. Ponce: Right. With the Anthrax Smoke Detector what we were doing was we were detecting whether or not spores were there. What this new technology does, by looking at whether or not spores are germinable, we can basically use germinability as an indicator of whether the spores are alive or dead. So, with this new method we can figure out whether or not the spores are alive, or whether or not they’ve just been killed, and that’s really important because, as you know, hygiene and sterility are very important in the hospital arena, and for food preparation areas, and for biological defense. After a biological attack, how do you know if the pathogen has been activated?

Well, it turns out that spores are the toughest form of life on Earth, and if you can show that you’ve killed spores – bacterial spores, or endospores – then you can assume all pathogens and anything else that you might be worried about has been killed as well. So, by developing a method that can determine rapidly and in an automated way whether or not spores are viable, alive, or dead, we can guess, very rapidly now, whether or not a sterilization regimen is effective. So, if you’re cleaning a surface, or if you’re fumigating the senate building after an anthrax attack, for example, how do you know that the sterilization was effective? Well, with our method you can very rapidly prove that sterility has been achieved.

NTB: What makes these bacterial endospores so resilient??

Dr. Ponce: That’s a good question. And that’s a matter of active research. It’s not something that I actively research, but colleagues of mine do and it’s a matter of debate.

One thing that is notable about spores is that there are many layers that basically shield the DNA and the internal part of the cell from the environment. The other thing is that basically they’re dehydrated. Most of the water has been extruded from the spores, so they’re very dry and they’re basically mineralized with calcium dipicolinate, which is something that we ultimately take advantage of in our detection scheme because we detect that dipicolonate in the spores.

NTB: How does NASA currently detect the presence of bacterial spores on its spacecraft?

Dr. Ponce: Well, right now there’s something called the NASA Standard Assay, and it’s based on culturing organisms that have been swabbed from a surface on a growth medium – Tryptic Soy Agar is what it’s called – and you basically incubate that for several days after a heat shock to kill off vegetative cells, and that’s how you enumerate how many spores – viable spores – are on the spacecraft in terms of culturable, colony forming units.

NTB: That process, I assume, is time consuming compared to your new method?

Dr. Ponce: As I mentioned, it is quite time consuming and labor intensive. It takes two to three days before the colonies become visible for counting and, of course, you have to wait that period of time before results become available. And it also takes a person with skill to handle those samples carefully.

In our case, we can run our assay in a timescale of 15 minutes from sampling to results. Also, because the chemistry of our detection assay is quite simple, we’ve been able to automate that, in essence taking a lot of the manual function out of the hands of an individual and placing it with an automated system.

NTB: You’re currently working with a company in Massachusetts called Advanced Space Monitor on developing a portable instrument that could be used by the Department of Homeland Security in the event of a biological attack. Tell us about that project and how close you think you are to producing a marketable product.

Dr. Ponce: That’s a good question. We are going into Phase 3 right now, the last phase for a Homeland Security project, where we’re developing an automated instrument that is intended to be deployed after a biological attack to help folks who are responsible for the cleanup determine whether or not the sterilization regimen was effective. We’ve developed a prototype instrument in Phase 2, and now in Phase 3 we’re developing the final prototype that will actually be deployed in clean rooms to make sure that it works, and we’ll be sending it to a third party.

Advanced Space Monitor is involved because they’ve licensed the technology and they are looking to generate prototype instruments for Homeland Security, but also for other commercial applications that are out there because, again, it’s not just the biodefense market, so to speak, it’s wherever sterility and hygiene are important. I mentioned a few of the industries and they include the hospital industry, the healthcare and food preparation industries, also the pharmaceutical industry is required to make sure their environments are cleaned to a certain threshold and are free of microorganisms.

NTB: Could this new technology you’ve developed someday be used to search for the presence of life on other planets?

Dr. Ponce: Yes. I mean, NASA ultimately is interested in achieving its main goals, and one of those is to search for life on other planets. The technology fits in two-fold. One is that when we send life-detection instruments to other places like Mars or Europa, for example, we want to make sure that we’re not detecting life that has been piggybacked on the spacecraft. In other words, we don’t want to get a false positive with the stuff that we carried on. Where our technology ties into this is planetary protection – making sure that spacecraft are clean. By giving planetary protection better tools for the future, I think we’ll reduce the risk of contamination. That’s one area that we fit into.

Secondly, what we’re doing is we’re looking at how life can survive in extreme environments on Earth. So one thing that we do is we go to the Atacama Desert in Chile. Or Kilimanjaro in Tanzania, to see how the toughest form of life – these spores – can survive in extreme environments, kind of setting the boundary conditions for life. That has relevance. Those are considered Mars analog sites. Without actually going to Mars, this is as close as we can get on Earth.

That might be a tough goal to achieve, having our technology embedded or be part of an actual mission. I suspect that because detecting endospores is so earthcentric in nature, that it would likely not be the first life detection mission to go out. But one can envision that if there is a positive detection of life, you might subsequently ask, “Well what kind of life is it?” The most likely life that could survive, you know, there’s this theory of Panspermia where early life on Mars and Earth was exchanged by a meteorite. If that type of mechanism was operating, then the most likely organisms to be exchanged in such a process would be endospores because they’re the most likely to survive the ejection from one planet, the transfer through space, and then crashing through the atmosphere of Earth or Mars.

So that’s kind of how I see it. All of these technologies that we’re developing for endospore detection and testing whether or not they’re alive or dead, really have applications for planetary protection, astrobiology, for life on Earth, and ultimately for missions far in the future.

NTB: You also head up a research organization called The Ponce Group. What is the Ponce Group, and what does it do?

Dr. Ponce: I have a joint appointment at Caltech as a visiting faculty member, and my research group – that should really be called the Ponce Research Group to distinguish it from the line organization we have here at JPL – but I have a research group that consists of graduate students and postdocs and undergraduates, and some staff, and that’s basically the Ponce Group. I’m the principal investigator, I work on bringing in the next projects and executing our current projects that we have. We have a number of projects. And then bringing in students and postdocs to work in the lab to get the results that we need to get to move the research forward.

It’s a very multi-disciplinary group. I have graduate students in bioengineering, environmental science and engineering, and chemistry. And postdocs that work in microbiology and molecular biology. So it’s a very multi-disciplinary group. We’re interested in a diverse set of problems, and I think we have a lot of fun doing that.

For more information, contact Adrian Ponce at This email address is being protected from spambots. You need JavaScript enabled to view it.

To download this interview as a podcast, click here