Tech Briefs

Control Software for Piezo Stepping Actuators

A control system has been developed for the Space Interferometer Mission (SIM) piezo stepping actuator. Piezo stepping actuators are novel because they offer extreme dynamic range (centimeter stroke with nanometer resolution) with power, thermal, mass, and volume advantages over existing motorized actuation technology. These advantages come with the added benefit of greatly reduced complexity in the support electronics. The piezo stepping actuator consists of three fully redundant sets of piezoelectric transducers (PZTs), two sets of brake PZTs, and one set of extension PZTs. These PZTs are used to grasp and move a runner attached to the optic to be moved. By proper cycling of the two brake and extension PZTs, both forward and backward moves of the runner can be achieved. Each brake can be configured for either a power-on or poweroff state. For SIM, the brakes and gate of the mechanism are configured in such a manner that, at the end of the step, the actuator is in a parked or power-off state.

The control software uses asynchronous sampling of an optical encoder to monitor the position of the runner. These samples are timed to coincide with the end of the previous move, which may consist of a variable number of steps. This sampling technique linearizes the device by avoiding input saturation of the actuator and makes latencies of the plant vanish. The software also estimates, in real time, the scale factor of the device and a disturbance caused by cycling of the brakes. These estimates are used to actively cancel the brake disturbance. The control system also includes feedback and feedforward elements that regulate the position of the runner to a given reference position. Convergence time for small- and medium-sized reference positions (1 millimeter) are limited by the step rate.

This work was done by Joel F. Shields of Caltech for NASA’s Jet Propulsion Laboratory. For more information, contact This email address is being protected from spambots. You need JavaScript enabled to view it. .

The software used in this innovation is available for commercial licensing. Please contact Dan Broderick at This email address is being protected from spambots. You need JavaScript enabled to view it. . NPO-48213