Home
Electrolytes comprising LiPF6 dissolved at a concentration of 1.0 M in three different mixtures of alkyl carbonates have been found well suited for use in rechargeable lithium-ion electrochemical cells at low temperatures. These and other electrolytes have been investigated in continuing research directed toward extending the lower limit of practical operating temperatures of Li-ion cells down to –60 °C. This research at earlier stages was reported in numerous previous NASA Tech Briefs articles, the three most recent being "Ethyl Methyl Carbonate as a Cosolvent for Lithium-Ion Cells" (NPO-20605), Vol. 25, No. 6 (June 2001), page 53; "Alkyl Pyrocarbonate Electrolyte Additives for Li-Ion Cells" (NPO-20775), Vol. 26, No. 5 (May 2002), page 37; and "Fluorinated Alkyl Carbonates as Cosolvents in Li-Ion Cells (NPO-21076), Vol. 26, No. 05 (May 2002), page 38. The present solvent mixtures, in terms of volume proportions of their ingredients, are 1 ethylene carbonate (EC) + 1 diethyl carbonate (DEC) + 1 dimethyl carbonate (DMC) + 3 ethyl methyl carbonate (EMC); 3EC + 3DMC + 14EMC; and 1EC + 1DEC + 1DMC + 4EMC. Relative to similar mixtures reported previously, the present mixtures, which contain smaller proportions of EC, have been found to afford better performance in experimental Li-ion cells at temperatures <–20 °C.

This work was done by Marshall Smart, Ratnakumar Bugga, and Subbarao Surampudi of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.techbriefs.com/tsp under the Materials category. NPO-30226

This Brief includes a Technical Support Package (TSP).

Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells (reference NPO-30226) is currently available for download from the TSP library.

Please Login at the top of the page to download.

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.