Home

Improved Oxygen-Beam Texturing of Glucose-Monitoring Optics

Textures can be more nearly optimized for greater utilization of light.

An improved method has been devised for using directed, hyperthermal beams of oxygen atoms and ions to impart desired textures to the tips of polymethylmethacrylate [PMMA] optical fibers to be used in monitoring the glucose content of blood. The improved method incorporates, but goes beyond, the method described in “Texturing Blood- Glucose-Monitoring Optics Using Oxygen Beams” (LEW-17642- 1), NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 11a. The basic principle of operation of such a glucose-monitoring sensor is as follows: The textured surface of the optical fiber is coated with chemicals that interact with glucose in such a manner as to change the reflectance of the surface. Light is sent down the optical fiber and is reflected from, the textured surface. The resulting change in reflectance of the light is measured as an indication of the concentration of glucose.

The required texture on the ends of the optical fibers is a landscape of microscopic cones or pillars having high aspect ratios (microscopic structures being taller than they are wide). The average distance between hills must be no more than about 5 µm so that blood cells (which are wider) cannot enter the valleys between the hills, where they would interfere with optical sensing of glucose in the blood plasma. On the other hand, the plasma is required to enter the valleys, and high aspect ratio structures are needed to maximize the surface area in contact with the plasma, thereby making it possible to obtain a given level of optical glucose-measurement sensitivity with a relatively small volume of blood. There is an additional requirement that the hills be wide enough that a sufficient amount of light can propagate into them and, after reflection, can propagate out of them.

ImageThe method described in the cited prior article produces a texture comprising cones and pillars that conform to the average- distance and aspect-ratio requirements. However, a significant fraction of the cones and pillars are so narrow that not enough light can propagate along them. The improved method makes it possible to form wider cones and pillars while still satisfying the average-distance and aspect-ratio requirements.

In the improved method, as in the previously reported method, multiple optical fibers are first bundled together for simultaneous texturing of their distal tips. However, prior to texturing by exposure to an oxygen beam, the tips are first coated by vapor deposition of a thin, sparse layer of aluminum: The exposure to the aluminum vapor must be short enough (typically of the order of seconds) so that the aluminum nucleates into islands separated by uncoated areas. The coated tips are textured by exposure to a directed beam of hyperthermal (kinetic energy >1 eV) oxygen atoms and/or ions in a vacuum chamber, as in the previously reported method. The aluminum islands partially shield the underlying PMMA from oxidation and erosion by the beam, so that the cones or pillars remaining after texturing are wider than they would otherwise be. To some extent, the dimensions of the hills and the distances between them can be tailored through choice of the thickness of the aluminum coat and/or the oxygen-beam fluence. The figure illustrates an example of texturing of the tip of a PMMA optical fiber without and with prior aluminum coating.

This work was done by Bruce A. Banks of Glenn Research Center. For further information, access the Technical Support Package (TSP) free on-line at www.techbriefs.com/tsp under the Manufacturing & Prototyping category.

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Glenn Research Center, Innovative Partnerships Office, Attn: Steve Fedor, Mail Stop 4–8, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-17975-1.

This Brief includes a Technical Support Package (TSP).

Improved Oxygen-Beam Texturing of Glucose-Monitoring Optics (reference LEW-17975-1) is currently available for download from the TSP library.

Please Login at the top of the page to download.