A report describes an improved high-voltage isolator for preventing electrical discharge along the flow path of a propellant gas being fed from a supply at a spacecraft chassis electrical potential to an ion thruster at a potential as high as multiple kilovolts. The isolator must survive launch vibration and must remain electrically nonconductive for thousands of hours under conditions that, in the absence of proper design, would cause formation of electrically conductive sputtered metal, carbon, and/or decomposed hydrocarbons on its surfaces.

The isolator includes an alumina cylinder containing a spiral channel filled with a porous medium made from alumina microbeads fired together with an alumina slurry. Connections to gas-transport tubes are made at both ends of the alumina cylinder by means of metal caps containing fine-mesh screens to prevent passage of loose alumina particles. The outer surface of the alumina cylinder is convoluted to lengthen the electrical path between the metal caps and to afford shadow shielding to minimize the probability of formation of a continuous deposit that would electrically connect the ends. A flanged cylindrical metal cap that surrounds the alumina cylinder without touching one of the ends provides additional shadow shielding.

This work was done by Bruce Banks of Glenn Research Center. For more information, download the Technical Support Package (free white paper) at www.techbriefs.com/tsp under the Physical Sciences category.

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Glenn Research Center, Innovative Partnerships Office, Attn: Steve Fedor, Mail Stop 4–8, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-18016-1.