Home

NASA to Launch Soil Moisture Mapper

A NASA spacecraft designed to track Earth's water in one of its most important, but least recognized forms — soil moisture — now is at Vandenberg Air Force Base, California, to begin final preparations for launch in January.The Soil Moisture Active Passive (SMAP) spacecraft arrived Wednesday at its launch site on California's central coast after traveling from NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. The spacecraft will undergo final tests and then be integrated on top of a United Launch Alliance Delta II rocket in preparation for a planned Jan. 29 launch.SMAP will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space and will detect whether the ground is frozen or thawed. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles.Soil moisture is critical for plant growth and supplies aquifers, which are underground water supplies contained in layers of rock, sand or dirt. Through evaporation, water in the soil cools the land surface and lower atmosphere while seeding the upper atmosphere with moisture that forms clouds and rain. High-resolution global maps of soil moisture produced from SMAP will allow scientists to understand how regional water availability is changing and inform water resource management decisions.“Water is vital for all life on Earth, and the water present in soil is a small but critically important part of Earth’s water cycle," said Kent Kellogg, SMAP project manager at JPL. “The delivery of NASA’s SMAP spacecraft to Vandenberg Air Force Base marks a final step to bring these unique and valuable measurements to the global science community.”SourceAlso: Learn about a Carbon Dioxide Sensor with Low Detection Limit.

Posted in: News

Read More >>

Biomimetic Photodetector “Sees” in Color

Rice University researchers have created a CMOS-compatible, biomimetic color photodetector that directly responds to red, green, and blue light in much the same way the human eye does. The new device uses an aluminum grating that can be added to silicon photodetectors with CMOS technology.

Posted in: News

Read More >>

Will cosmic elevators take us to space?

This week's Question: Penn State researchers recently developed ultra-thin, super-strong nanothreads made from diamonds. The nanothreads could ultimately be used to construct a "space elevator" to take people to orbit. A Japanese company, Obayashi, similarly sees the feasibility of such an elevator and envisions a space station tethered to the equator by a 96,000-km cable made of carbon nanotechnology. In theory, robotics cars with magnetic motors would quickly take people and cargo to the station. What do you think? Will cosmic elevators take us to space?

Posted in: Question of the Week

Read More >>

Researchers Develop Thinnest Electric Generator

Researchers from Columbia Engineering and the Georgia Institute of Technology made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically thin material, molybdenum disulfide (MoS2), resulting in a unique electric generator and mechanosensation devices that are optically transparent, extremely light, and very bendable and stretchable.“This material—just a single layer of atoms—could be made as a wearable device, perhaps integrated into clothing, to convert energy from your body movement to electricity and power wearable sensors or medical devices, or perhaps supply enough energy to charge your cell phone in your pocket,” says James Hone, professor of mechanical engineering at Columbia and co-leader of the research.Hone’s team placed thin flakes of MoS2 on flexible plastic substrates and determined how their crystal lattices were oriented using optical techniques. They then patterned metal electrodes onto the flakes. In research done at Georgia Tech, a group led by Zhong Lin Wang, Regents’ Professor in Georgia Tech’s School of Materials Science and Engineering, installed measurement electrodes on the samples provided by Hone’s group, then measured current flows as the samples were mechanically deformed. They monitored the conversion of mechanical to electrical energy, and observed voltage and current outputs.Ultimately, Zhong Lin Wang notes, the research could lead to complete atomic-thick nanosystems that are self-powered by harvesting mechanical energy from the environment. This study also reveals the piezotronic effect in two-dimensional materials for the first time, which greatly expands the application of layered materials for human-machine interfacing, robotics, MEMS, and active flexible electronics.Source Also: Learn more about a Piezoelectric Energy Harvesting Transducer System.

Posted in: News

Read More >>

3D-Printed Power Inverter Enables Lighter Electric Vehicles

Using 3D printing and novel semiconductors, researchers at the Department of Energy’s Oak Ridge National Laboratory have created a power inverter that could make electric vehicles lighter, more powerful, and more efficient.At the core of this development is wide bandgap material made of silicon carbide, with qualities superior to standard semiconductor materials. Power inverters convert direct current into the alternating current that powers the vehicle. The Oak Ridge inverter achieves much higher power density with a significant reduction in weight and volume.Using additive manufacturing, researchers optimized the inverter’s heat sink, allowing for better heat transfer throughout the unit. This construction technique allowed them to place lower-temperature components close to the high-temperature devices, further reducing the electrical losses and reducing the volume and mass of the package.The research group’s first prototype, a liquid-cooled all-silicon carbide traction drive inverter, features 50-percent-printed parts. Initial evaluations confirmed an efficiency of nearly 99 percent, surpassing DOE’s power electronics target and setting the stage for building an inverter using entirely additive manufacturing techniques.Building on the success of this prototype, researchers are working on an inverter with an even greater percentage of 3D-printed parts in commercially available vehicles. SourceAlso: See other Electronics tech briefs.

Posted in: Manufacturing & Prototyping, Rapid Prototyping & Tooling, Transportation, Automotive, Semiconductors & ICs, News

Read More >>

No-Power Wi-Fi Connectivity Could Fuel Internet of Things

Imagine a world in which your wristwatch or other wearable device communicates directly with your online profiles, storing information about your daily activities where you can best access it, all without requiring batteries. Or, battery-free sensors embedded around your home that could track minute-by-minute temperature changes and send that information to your thermostat to help conserve energy.

Posted in: Electronics & Computers, Power Management, Sensors, Test & Measurement, Monitoring, Communications, Wireless, RF & Microwave Electronics, News, Products

Read More >>

Ferroelectric Materials Could Revolutionize Data-Driven Devices

Electronic devices with unprecedented efficiency and data storage may someday run on ferroelectrics — remarkable materials that use built-in electric polarizations to read and write digital information, outperforming the magnets that are inside most popular data-driven technology. But ferroelectrics must first overcome a few key stumbling blocks, including a curious habit of "forgetting" stored data. Now, however, scientists at the U.S. Department of Energy's Brookhaven National Laboratory have discovered nanoscale asymmetries and charge preferences hidden within ferroelectrics that may explain their operational limits.

Posted in: Electronics & Computers, Electronic Components, Board-Level Electronics, Electronics, Power Management, Computers, Materials, Metals, Test & Measurement, Measuring Instruments, News

Read More >>