Home

Will selfies replace the password?

This week's Question: New apps, including one created by West Virginia University students in 2014, uses advanced facial recognition and liveness detection capabilities to authenticate smartphone users. A free technology from Hoyos Labs, showcased at this year’s Consumer Electronics Show in Las Vegas, similarly enables a person to log in to a device without a user name, password, or other personally identifiable data. What do you think? Will selfies replace the password?

Posted in: Question of the Week

Read More >>

David Blake, Senior Research Scientist, Ames Research Center, Moffett Field, CA

    David Blake developed the Chemistry and Mineralogy (CheMin) X-ray diffraction instrument that is currently deployed on the Mars Science Laboratory rover Curiosity. The powder-handling device inside CheMin won Blake the 2010 NASA Commercial Government Invention of the Year award.  This technology allowed scientists to determine the quantitative mineralogy of the 3.5 billion-year-old rocks on the Red Planet for the first time.

Posted in: News

Read More >>

Public Lighting System Runs on Solar and Wind Energy

A researcher at the Barcelona College of Industrial Engineering, in collaboration with the company Eolgreen, has developed the first autonomous industrialized public lighting system that works with solar and wind energy. This system, developed after four years of research, is designed for inter-urban roads, motorways, urban parks, and other public areas. It is unique in the world, and reduces the cost by 20% compared with conventional public lighting systems. The prototype is 10 meters high and is fitted with a solar panel, a wind turbine, and a battery. The turbine runs at a speed of 10 to 200 rpm and has a maximum output of 400 watts. Work is being done on a second prototype generator that runs at a lower speed (10 to 60 rpm) and has a lower output (100 W). An electronic control system manages the flow of energy among the solar panel, the wind turbine, the battery, and the light. Source:

Posted in: News, Batteries, Renewable Energy, Solar Power, Wind Power

Read More >>

Zinc Oxide Materials Power Tiny Energy Harvesting Devices

Many types of smart devices are readily available and convenient to use. The goal now is to make wearable electronics that are flexible, sustainable, and powered by ambient renewable energy. This last goal inspired researchers to explore how the attractive physical features of zinc oxide (ZnO) materials could be used to tap into abundant mechanical energy sources to power micro devices. They discovered that inserting aluminum nitride insulating layers into ZnO-based energy harvesting devices led to a significant improvement of the devices’ performance. The group’s findings are expected to provide an effective approach for realizing “nanogenerators” for self-powered electronic systems such as portable communication devices, healthcare monitoring devices, environmental monitoring devices, and implantable medical devices. Source:

Posted in: News, Electronic Components, Energy Harvesting, Renewable Energy, Metals

Read More >>

Glass as Electrode Makes Batteries More Efficient

Today’s batteries provide a reliable power supply for our smartphones, electric cars and laptops, but are unable to keep up with the growing demands placed on them. Researchers have discovered a material that may have the potential to double battery capacity: vanadate-borate glass. The glass is being used as a cathode material, which is made of vanadium oxide (V2O5) and lithium-borate (LiBO2) precursors, and was coated with reduced graphite oxide (RGO) to enhance the electrode properties of the material. The vanadate-borate glass powder was used for battery cathodes, which were placed in prototypes for coin cell batteries to undergo numerous charge/discharge cycles. In tests, the glass electrodes demonstrated a vast improvement in these batteries’ capacity and energy density. Source:

Posted in: News, Batteries, Electronic Components, Energy Efficiency

Read More >>

ORCA Prototype Ready to Observe Ocean

If selected for a NASA flight mission, the Ocean Radiometer for Carbon Assessment (ORCA) instrument will study microscopic phytoplankton, the tiny green plants that float in the upper layer of the ocean and make up the base of the marine food chain.Conceived in 2001 as the next technological step forward in observing ocean color, the ORCA-development team used funding from Goddard’s Internal Research and Development program and NASA’s Instrument Incubator Program (IIP) to develop a prototype. Completed in 2014, ORCA now is a contender as the primary instrument on an upcoming Earth science mission.The ORCA prototype has a scanning telescope designed to sweep across 2,000 kilometers (1,243 miles) of ocean at a time. The technology collects light reflected from the sea surface that then passes through a series of mirrors, optical filters, gratings, and lenses. The components direct the light onto an array of detectors that cover the full range of wavelengths.Instead of observing a handful of discrete bands at specific wavelengths reflected off the ocean, ORCA measures a range of bands, from 350 nanometers to 900 nanometers at five-nanometer resolution. The sensor will see the entire rainbow, including the color gradations of green that fade into blue. In addition to the hyperspectral bands, the instrument has three short-wave infrared bands that measure specific wavelengths between 1200 and 2200 nanometers for atmospheric applications.The NASA researchers will use ORCA to obtain more accurate measurements of chlorophyll concentrations, the size of a phytoplankton bloom, and how much carbon it holds. Detecting chlorophyll in various wavelengths also will allow the team to distinguish between types of phytoplankton. Suspended sediments in coastal regions could also be detected by the instrument.SourceAlso: Learn about a Ultra-Low-Maintenance Portable Ocean Power Station.

Posted in: News, Optics, Photonics, Sensors, Measuring Instruments

Read More >>

Coming Soon - Thermal Storage and Management using Phase Change Material

Phase Change Materials (PCMs) provide significant thermal energy storage by taking advantage of the latent heat required for the solid-to-liquid and liquid-to-gas phase transition.

Posted in: Upcoming Webinars, Energy Storage

Read More >>