Virtual Hardware ECU: How to Significantly Increase Testing Throughput

In Conjunction with SAE

Both the complexity and software content of automotive electronic systems are increasing rapidly. At the same time, the demand for more software and system testing is growing. This need is being driven by requirements from the ISO 26262 standard and the necessity to reduce software-driven recalls, which have been significantly rising over the past few years.

Posted in: Upcoming Webinars, Electronics
Read More >>

Connectivity Solutions - Keeping Pace with the Rapid Evolution of Embedded Computing Systems

Embedded Computing is seeing a rapid evolution in system design. New defense platforms and system upgrades are widely adopting open architecture standards like VPX in place of 20+ year old technologies. Defense-grade processors are now achieving 28Gbps data rates with significant I/O count, which drives increased functionality and enables computing hardware to shrink in size and weight.

Posted in: Upcoming Webinars, Defense, Electronics & Computers
Read More >>

Local Situational Awareness Design and Military and Machine Vision Standards

Real-time video is playing an increasingly important role in a range of military local situational analysis (LSA) applications to help improve surveillance and intelligence of possible threats while keeping troops out of harm’s way.

Posted in: White Papers, White Papers, Defense, Imaging, Data Acquisition, Sensors
Read More >>

Giant shipworm could reveal clues about human medicine, bacterial infections

Northeastern professor Daniel Distel and his colleagues have discovered a dark, slithering 4-foot-long creature that dwells in the foul mud of a remote lagoon in the Philippines. They say studying the animal, a giant shipworm with pinkish siphons at one end and an eyeless head at the other, could add to our understanding of how bacteria cause infections and, in turn, how we might adapt to tolerate or even benefit from them.

Posted in:
Read More >>

Printed Electronics Primer: an Introduction to the Basics of Printed Electronics

This white paper provides an overview of how printed electronics (PE) can help you fit more functionality into smaller spaces, while maximizing cost efficiency. You will learn the basic terminology and gain an understanding of today’s PE industry, including prevalent technologies, materials and manufacturing processes.

Posted in: White Papers, Communications, Electronics & Computers, Medical
Read More >>

Compact Active Vibration Control System

This system provides active damping of flexible structures using a simple and compact actuator, sensor, and control system.

NASA Langley Research Center has developed a point sensor and piezoelectric actuator system to actively sense and reduce vibrations in flexible structures. The system uses a directional piezoelectric actuator that couples to an underlying structure like four point forces acting normal to the structure. Four miniature accelerometers are located coincident with the piezoelectric point forces to create a matched actuator/sensor pair. This matched pair enables feedback control to be implemented using simple, robust, negative feedback that requires no knowledge of the dynamics of the structure, and can be implemented using analog electronics. When attached to a flexible structure, this active damping system can reduce vibrations in a variety of applications. Compared to other systems, this approach offers good performance with a simple and compact control system.

Posted in: Briefs, Sensors
Read More >>

Self-Assembling, Reversible, Reagentless Biosensor

Applications include pathogen detection, industrial monitoring, chemical detection, and healthcare and drug discovery.

Recognition-based biosensors capable of specifically detecting chemicals, toxins, and bio-agents in their environment are of increasing importance. An important goal in biosensor evolution is production of nanoscale assemblies capable of continuously monitoring concentrations of target species in a simple, reliable manner. This is accomplished by designing sensor components to carry out analyte recognition and binding while simultaneously producing useful output signals via an integrated signal transduction system. Optically addressed biosensors of this type often employ fluorescence resonance energy transfer (FRET) in signal transduction. FRET has been employed in carefully designed sensing systems for proteins, peptides, nucleic acids, and other small molecules.

Posted in: Briefs, Sensors
Read More >>

Chip-Based Power Measurement Sensor

These sensors could be deployed in bulk, both on land and in space.

Phone signals spend at least some time traveling over fiber-optic cables. To ensure that the information gets where it needs to go, and to help researchers find better ways to ferry this information around, it’s necessary to reliably measure radiation power through these fibers. In order to calibrate a radiation power meter, researchers currently have to use a bulky cryogenic system and transfer the measurements to at least one other intermediate system. Each of these transfers increases uncertainties in the measurements, and the cryogenic systems are relatively rare and expensive to use and maintain.

Posted in: Briefs, Sensors
Read More >>

Space Radiation Detector with Spherical Geometry

This technology enables in-situ studies of the impact of Galactic Cosmic Radiation ions on Earth and in space.

NASA’s Glenn Research Center has developed and patented the Compact Full-Field Ion Detector System (CFIDS), a radiation particle detection system that provides information on the kinetic energies, directions, and electric charges of subatomic particles. The integrated package consists of a spherical Cherenkov detector, a compact detector stack, and low-noise, large-area detectors based on silicon carbide. The detectors and configuration can be modified to suit specific applications. The technology is an improvement over more conventional gas ionization detectors because the higher density of the solid media provides higher sensitivity to radiation. Originally developed to measure the properties of cosmic rays in outer space, the technology could be adapted for use on Earth for radiation dosimetry aboard high-altitude aircraft and in proton radiation therapy for cancer treatment.

Posted in: Briefs, Sensors
Read More >>

Low-Pressure Plasma Cleaning of Aerospace Components Using Breathing/Compressed Air

A method for precision cleaning of aerospace components is needed that does not use hazardous or environmentally harmful commodities. Historically, precision cleaning methods have utilized solvents that have contributed to the depletion of the ozone layer or had high potential for contributing to global warming. Solvent cleaning produces large waste streams, and some solvents may be phased out in the future due to the environmental concerns.

Posted in: Briefs, Mechanical Components
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.