Vision-Correcting Display Replaces Reading Glasses

UC Berkeley computer and vision scientists are developing computer algorithms to compensate for an individual’s visual impairment. The researchers have created vision-correcting displays that enable users to see text and images clearly without wearing eyeglasses or contact lenses.The algorithm, which was developed at UC Berkeley, works by adjusting the intensity of each direction of light that emanates from a single pixel in an image based upon a user’s specific visual impairment. In a process called deconvolution, the light passes through the pinhole array in such a way that the user will perceive a sharp image.The technology could potentially help hundreds of millions of people who currently need corrective lenses to use their smartphones, tablets and computers. More importantly, the displays could one day aid people with more complex visual problems, known as high order aberrations, which cannot be corrected by eyeglasses, said Brian Barsky, UC Berkeley professor of computer science and vision science, and affiliate professor of optometry.SourceAlso: Learn about Strobing to Mitigate Vibration for Display Legibility.

Posted in: News

Read More >>

Researchers Build 'Invisible' Materials with Light

Metamaterials have a wide range of potential applications, including sensing and improving military stealth technology. Before cloaking devices can become reality on a larger scale, however, researchers must determine how to make the right materials at the nanoscale. Using light is now shown to be an enormous help in such nano-construction. A new technique uses light like a needle to thread long chains of particles. The development could help bring sci-fi concepts, such as cloaking devices, one step closer to reality.The technique developed by the University of Cambridge team involves using unfocused laser light as billions of needles, stitching gold nanoparticles together into long strings, directly in water for the first time. The strings can then be stacked into layers one on top of the other, similar to Lego bricks. The method makes it possible to produce materials in much higher quantities than can be made through current techniques. SourceAlso: See other Sensors tech briefs.

Posted in: Photonics, Lasers & Laser Systems, Materials, Sensors, Nanotechnology, Defense, News

Read More >>

Spongelike Structure Converts Solar Energy into Steam

A new material structure developed at MIT generates steam by soaking up the sun.The structure — a layer of graphite flakes and an underlying carbon foam — is a porous, insulating material structure that floats on water. When sunlight hits the structure’s surface, it creates a hotspot in the graphite, drawing water up through the material’s pores, where it evaporates as steam. The brighter the light, the more steam is generated.The new material is able to convert 85 percent of incoming solar energy into steam — a significant improvement over recent approaches to solar-powered steam generation.“Steam is important for desalination, hygiene systems, and sterilization,” says Hadi Ghasemi, a postdoc in MIT’s Department of Mechanical Engineering, who led the development of the structure. “Especially in remote areas where the sun is the only source of energy, if you can generate steam with solar energy, it would be very useful.”SourceAlso: See other Energy tech briefs.

Posted in: Materials, Solar Power, Energy Harvesting, Energy, News

Read More >>

Astronauts to Test Free-Flying Robotic 'Smart SPHERES'

Three bowling ball-size free-flying Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) have been flying inside the International Space Station since 2006. These satellites provide a test bed for development and research, each having its own power, propulsion, computer, navigation equipment, and physical and electrical connections for hardware and sensors for various experiments.Aboard Orbital Sciences Corp.'s second contracted commercial resupply mission to the space station, which arrived to the orbital laboratory on July 16, NASA's Ames Research Center in Moffett Field, California, sent two Google prototype Project Tango smartphones that astronauts will attach to the SPHERES for technology demonstrations inside the space station. By connecting a smartphone to the SPHERES, the technology becomes "Smart SPHERES, " a more "intelligent" free-flying robot with built-in cameras to take pictures and video, sensors to help conduct inspections, powerful computing units to make calculations and Wi-Fi connections to transfer data in real time to the computers aboard the space station and at mission control in Houston.In a two-phase experiment, astronauts will manually use the smartphones to collect visual data using the integrated custom 3-D sensor to generate a full 3-D model of their environment. After the map and its coordinate system are developed, a second activity will involve the smartphones attached to the SPHERES, becoming the free-flying Smart SPHERES. As the free-flying robots move around the space station from waypoint to waypoint, utilizing the 3-D map, they will provide situational awareness to crewmembers inside the station and flight controllers in mission control. These experiments allow NASA to test vision-based navigation in a very small mobile product.SourceAlso: Learn about Automatic Lunar Rock Detection and Mapping.

Posted in: Electronics & Computers, Power Management, PCs/Portable Computers, Cameras, Video, Visualization Software, Imaging, Sensors, Test & Measurement, Communications, Aerospace, Aviation, Machinery & Automation, Robotics, RF & Microwave Electronics, News

Read More >>

Hurricane-Tracking Unmanned Systems Win NASA Challenge

NASA has selected three winning designs solicited to address the technological limitations of the uncrewed aerial systems (UAS) currently used to track and collect data on hurricanes. Engineering teams at Virginia Polytechnic Institute and State University, Purdue University, and the University of Virginia were named first- through third-place winners, respectively, of the agency's 2013-2014 University Aeronautics Engineering Design Challenge.

Posted in: Alternative Fuels, Environmental Monitoring, Test & Measurement, Measuring Instruments, Monitoring, Aerospace, Aviation, Machinery & Automation, Robotics, Data Acquisition, News

Read More >>

Agile Aperture Antenna Tested on Aircraft to Maintain Satellite Connection

Two of Georgia Tech's software-defined, electronically reconfigurable Agile Aperture Antennas (A3) were demonstrated in an aircraft during flight tests. The low-power devices can change beam directions in a thousandth of a second. One device, looking up, maintained a satellite data connection as the aircraft changed headings, banked and rolled, while the other antenna looked down to track electromagnetic emitters on the ground.

Posted in: Electronics & Computers, Electronic Components, Board-Level Electronics, Electronics, Power Management, Software, Test & Measurement, Measuring Instruments, Communications, Wireless, Aerospace, Aviation, RF & Microwave Electronics, Antennas, News

Read More >>

Heat-Sensing Camera Reveals Map of Mars Surface

A heat-sensing camera designed at Arizona State University has provided data to create the most detailed global map yet made of Martian surface properties.The map uses data from the Thermal Emission Imaging System (THEMIS), a nine-band visual and infrared camera on NASA’s Mars Odyssey orbiter. A version of the map optimized for scientific researchers is available at the U.S. Geological Survey (USGS)."We used more than 20,000 THEMIS nighttime temperature images to generate the highest resolution surface property map of Mars ever created," says the Geological Survey's Robin Fergason, who earned her doctorate at ASU in 2006. "Now these data are freely available to researchers and the public alike." SourceAlso: Read a Q&A with a Mars Science Laboratory (MSL) engineer.  

Posted in: Cameras, Imaging, Aerospace, Data Acquisition, News

Read More >>