Home

New Strain Gauge Enables 'Soft Machines'

Purdue University researchers have developed a technique to embed a liquid-alloy pattern inside a rubber-like polymer to form a network of sensors. The approach may be used to produce "soft machines" made of elastic materials and liquid metals.Such an elastic technology could be used to create robots with sensory skin, as well as develop stretchable garments that interact with computers."What's exciting about the soft strain gauge is that it can detect very high strains and can deform with almost any material," said Rebecca Kramer, an assistant professor of mechanical engineering at Purdue University. "The skin around your joints undergoes about 50 percent strain when you bend a limb, so if you wanted to have sensory skin and wearable technology that tracks your movement you need to employ soft, stretchable materials that won't restrict your natural range of motion."SourceAlso: Learn about Thermal Properties of Microstrain Gauges.

Posted in: Materials, Metals, Plastics, Motion Control, Sensors, Machinery & Automation, Robotics, News

Read More >>

Engineers Develop Ultrastiff, Ultralight Material

Engineers at MIT and Lawrence Livermore National Laboratory (LLNL) have developed a new ultrastiff, ultralight material. The material is based on the use of microlattices with nanoscale features, combining great stiffness and strength with ultralow density. The actual production of such materials is made possible by a high-precision 3-D printing process called projection microstereolithography.By using the right mathematically determined structures to distribute and direct the loads — the way the arrangement of vertical, horizontal, and diagonal beams do in a structure like the Eiffel Tower — the lighter structure can maintain its strength."We found that for a material as light and sparse as aerogel [a kind of glass foam], we see a mechanical stiffness that’s comparable to that of solid rubber, and 400 times stronger than a counterpart of similar density. Such samples can easily withstand a load of more than 160,000 times their own weight,” said Associate Professor Nick Fang. SourceAlso: See other Materials and Coatings tech briefs.

Posted in: Manufacturing & Prototyping, Rapid Prototyping & Tooling, Materials, Nanotechnology, News

Read More >>

Researchers Develop Flexible, Energy-Efficient Hybrid Circuit

Researchers from the USC Viterbi School of Engineering have developed a flexible, energy-efficient hybrid circuit combining carbon nanotube thin film transistors with other thin film transistors. The hybrid could take the place of silicon as the traditional transistor material used in electronic chips, since carbon nanotubes are more transparent, flexible, and can be processed at a lower cost.The hybridization of carbon nanotube thin films and IGZO (indium, gallium and zinc oxide) thin films was achieved by combining their types, p-type and n-type, respectively, to create circuits that can operate complimentarily, reducing power loss and increasing efficiency. The inclusion of IGZO thin film transistors provided power efficiency to increase battery life. The potential applications for the integrated circuitry are numerous, including Organic Light Emitting Diodes (OLEDs), digital circuits, radio frequency identification (RFID) tags, sensors, wearable electronics, and flash memory devices. Even heads-up displays on vehicle dashboards could soon be a reality.The new technology also has major medical implications. Currently, memory used in computers and phones is made with silicon substrates, the surface on which memory chips are built. To obtain medical information from a patient such as heart rate or brainwave data, stiff electrode objects are placed on several fixed locations on the patient’s body. With the new hybridized circuit, however, electrodes could be placed all over the patient’s body with just a single large but flexible object.SourceAlso: Learn about an Integral Battery Power Limiting Circuit for Intrinsically Safe Applications.

Posted in: Electronics & Computers, Electronic Components, Board-Level Electronics, Sensors, Medical, Patient Monitoring, Lighting, OLEDs, RF & Microwave Electronics, Semiconductors & ICs, News

Read More >>

Thin Films Self-Assemble in One Minute

Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have devised a technique whereby self-assembling nanoparticle arrays can form a highly ordered thin film over macroscopic distances in one minute.

Posted in: Electronics & Computers, Electronic Components, Photonics, Optics, Manufacturing & Prototyping, Materials, Coatings & Adhesives, Composites, Nanotechnology, News

Read More >>

New Supercapacitor Could Make Structural Energy Storage A Reality

Imagine a future in which our electrical gadgets are no longer limited by plugs and external power sources. This intriguing prospect is one of the reasons for the current interest in building the capacity to store electrical energy directly into a wide range of products, such as a laptop whose casing serves as its battery, or an electric car powered by energy stored in its chassis, or a home where the dry wall and siding store the electricity that runs the lights and appliances. It also makes the small, dull grey wafers that graduate student Andrew Westover and Assistant Professor of Mechanical Engineering Cary Pint have made in Vanderbilt's Nanomaterials and Energy Devices Laboratory far more important than their nondescript appearance suggests.

Posted in: Electronics & Computers, Electronic Components, Power Management, Energy Storage, Energy, Semiconductors & ICs, News

Read More >>

New Way To Make Sheets Of Graphene Discovered

Graphene's promise as a material for new kinds of electronic devices, among other uses, has led researchers around the world to study the material in search of new applications. But one of the biggest limitations to wider use of the strong, lightweight, highly conductive material has been the hurdle of fabrication on an industrial scale.

Posted in: Electronics & Computers, Electronic Components, Materials, Coatings & Adhesives, Solar Power, Energy, Semiconductors & ICs, News

Read More >>

Roof Tiles Clean the Air

A team of University of California, Riverside’s Bourns College of Engineering students has developed a titanium dioxide roof tile coating that removes up to 97 percent of smog-causing nitrogen oxides.The students' calculations show that 21 tons of nitrogen oxides would be eliminated daily if tiles on one million roofs were coated with their titanium dioxide mixture. The researchers coated two identical, off-the-shelf clay tiles with different amounts of titanium dioxide, a common compound found in everything from paint to food to cosmetics. The tiles were then placed inside a miniature atmospheric chamber that the students built out of wood, Teflon, and PVC piping.The chamber was connected to a source of nitrogen oxides and a device that reads concentrations of nitrogen oxides. The students used ultraviolet light to simulate sunlight, which activates the titanium dioxide and allows it to break down the nitrogen oxides. They found the titanium dioxide coated tiles removed between 88 percent and 97 percent of the nitrogen oxides.SourceAlso: Learn about Spectroscopic Determination of Trace Contaminants in High-Purity Oxygen.

Posted in: Remediation Technologies, Green Design & Manufacturing, Materials, Coatings & Adhesives, Test & Measurement, News

Read More >>