Home

Fabrication of an Integrated Photonic Waveguide Joint in Micromachined Silicon

This technology could be used in any MEMS or micromachined structure that requires multiple levels of topography. Goddard Space Flight Center, Greenbelt, Maryland High-aspect-ratio silicon structures are necessary components in many MEMS (microelectromechanical systems). Aspect ratio is defined as the ratio of the height of the structure to its lateral width. The structures are typically fabricated through bulk micromachining steps such as deep reactive ion etching. In some cases, multiple levels of high-aspect-ratio structures are required. For instance, one may want to etch completely through a silicon wafer to thermally isolate a bolometer or provide waveguide coupling to an antenna defined on an insulating membrane, and at the same time have integrated high-topology structures required for microwave coupling or filtering. Definition of the structures typically uses photolithographic technology. But for high-aspect-ratio structures, spin cast resist becomes difficult to incorporate due to the non-uniform thickness of the resist around tall structures. One can cast very thick layers of photoresist, but this limits the minimum feature size, and additionally, very thick layers of photoresist are difficult to work with due to solvent release and moisture that can cause the resist to crack or swell. For electromagnetic reasons, the structures would preferably be made from conductive material such as metal or degeneratively doped silicon. The objective of this work was to incorporate multiple levels of conductive high-aspectratio structures with standard micromachining processes.

Posted in: Briefs

Read More >>

Very Large Inflatable Antenna Structures

This methodology enables production of very large, but lightweight, structures in space. Langley Research Center, Hampton, Virginia Future space exploration past Earth orbit has a significant need for manufacturing in space beyond simple assembly of prefabricated parts. The next generation of very large aperture antennas will exceed the size achievable with conventional folding mesh technologies and new concepts are needed to support football-field-size structures. Technologies to address the problem have been developed using the formation of polyurethanes in a vacuum environment. Large inflatable structures can be stabilized by the formation of polyurethane foams of controlled density. For use in a vacuum environment, the availability of oligomeric precursors is important. Low-molecular-weight components would immediately evaporate, changing the stoichiometry of the reaction and potentially contaminate a space environment, but high-molecular-weight precursors have a much more limited range of properties.

Posted in: Briefs

Read More >>

Constraint Force Equation (CFE) Solver for Multi-Body Dynamics and its Implementation in POST2

Langley Research Center, Hampton, Virginia Existing aerospace flight trajectory programs simulate the motion of aerospace vehicles by modeling external forces and moments acting on each body, but lack provisions for determining reaction forces and moments exerted by one body on another through a connecting joint. These reaction forces and moments are also known as constraint forces and moments because they permit specified motion of one body relative to another, and, at the same time, prohibit all other relative motions. In other words, a joint imposes certain constraints on relative motion.

Posted in: Briefs

Read More >>

Cyclops: the Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS)

Lyndon B. Johnson Space Center, Houston, Texas The Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), also known as “Cyclops,” deployed the largest satellite ever from the International Space Station (ISS) on November 28, 2014. The satellite, SpinSat, a Naval Research Laboratory (NRL)/Department of Defense Space Test Program (DoD STP) satellite, is pioneering the utilization of electronically controlled solid propellant thrusters as well as acquiring vital atmospheric density data. It is a spherical satellite 22 inches in diameter, weighing 115 pounds, and will remain in orbit for over two years.

Posted in: Briefs

Read More >>

Vacuum-Jacketed Cryogenic Flex-Through

John F. Kennedy Space Center, Florida A vacuum-jacketed, cryogenic flex hose was designed with an integrated flange to be able to pass through a vacuum chamber wall. This design increases the quality of the cryogenic fluid at the exit of the hose (i.e., more liquid, less vapor) by extending the hose vacuum-jacket through the chamber wall, where usually a non-insulated fluid fitting would be required.

Posted in: Briefs

Read More >>

Normally-Closed Zero-Leak Valve with a Magnetostrictive Actuator

The valve can be used wherever normally closed valves are required. Goddard Space Flight Center, Greenbelt, Maryland A hermetically sealed, normally closed (NC) zero-leak valve has been developed. Prior to actuation, the valve isolates the working fluid in the upstream volume from the downstream volume with a parent metal seal. The valve utilizes the magnetostrictive alloy Terfenol-D for actuation. This alloy experiences a phenomenon known as magnetostriction, i.e., a gross elongation, when exposed to a magnetic field. This elongation fractures the seal within the wetted volume of the valve, opening the valve permanently and establishing fluid flow. The required magnetic field is generated by redundant coils concentric to the Terfenol, but isolated from the working fluid. The response time for this phenomenon to occur and subsequently for actuation is on the order of milliseconds. The wetted volume consists of entirely parent-metal 6Al-4V titanium, compatible with all storable propellants, helium, nitrogen, argon, isopropyl alcohol, and argon. When coupled with the parent metal seal, this design gives the valve internal and external leak rates of zero.

Posted in: Briefs

Read More >>

Scenario Power Load Analysis Tool (SPLAT) MagicDraw Plug-in

The SPLAT tool could be applied to any project that needs to track time-dependent power consumption; it computes power usage profiles based on modeled component information and scenarios. NASA’s Jet Propulsion Laboratory, Pasadena, California Power consumption during all phases of spacecraft flight is of great interest to the aerospace community. As a result, significant analysis effort is exerted by both system and electrical-domain engineers to understand the rates of electrical energy generation and consumption under many operational scenarios of the system. Previously, no standard tool existed for creating and maintaining a Power Equipment List (PEL) of spacecraft components that consume power, and no standard tool existed for generating power load profiles based on this PEL information during mission design phases. Projects have traditionally either developed ad-hoc spreadsheet-based tools, or adapted complex simulation tools to compute such resource predictions; both of these approaches have significant limitations.

Posted in: Briefs, Power Management

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.