Shape Sensing Using a Multi-Core Optical Fiber Having an Arbitrary Initial Shape in the Presence of Extrinsic Forces

This technology can be used for aerospace safety, medical applications, robotics, and space exploration.NASA’s Langley Research Center has demonstrated a patent-pending method and apparatus for determining the position, in three dimensions, of any point on an optical fiber. The new method uses low-reflectance Fiber Bragg Grating (FBG) strain sensors in a multicore fiber to determine how any point along that fiber is positioned in space. The characteristics of optical fibers and the FBGs vary with curvature, and by sensing the relative change of FBGs in each of three or more fiber cores, the three-dimensional change in position can be determined. By using this method in monitoring applications where optical fibers can be deployed — such as in structures, medical devices, or robotics — precise deflection, end position, and location can be determined in near real time. This innovative position detection method offers 10 times greater positional accuracy than comparable optical techniques.

Posted in: Briefs, Instrumentation


Magnetic and Raman-Based Method for Process Control During Fabrication of Carbon-Nanotube-Based Structures

The methodology enables high quality and high yield with about 30% weight reduction over carbon composite materials.NASA’s Langley Research Center has developed an innovative magnetic and Raman-based method for macroscopic process control during fabrication of carbon-nanotube-based structures. The development of super-strong, lightweight materials based on carbon nanotubes promises new materials with the strength of current carbon composite materials, but at substantially less weight. The development of these new materials is dependent upon nanotube quality, alignment, and load transfer between individual nanotubes in the structure. However, current fabrication process controls are limited to time-consuming microscopy testing at intermittent stages during processing. NASA’s innovative method can be applied during nanotube structure fabrication to obtain real-time feedback on critical processing parameters during fabrication. Moreover, the method is compatible with in-line fabrication processes.

Posted in: Briefs, Instrumentation


Fully Premixed, Low-Emission, High-Pressure, Multi-Fuel Burner

Applications include use in aircraft, spacecraft, and heating and boilers for commercial and residential systems.NASA’s Glenn Research Center has developed a novel design for a fully premixed, high-pressure burner capable of operating on a variety of gaseous fuels and oxidizers, including hydrogen-air mixtures, with a low pressure drop. The burner provides a rapidly and uniformly mixed fuel-oxidizer mixture that is suitable for use in a fully premixed combustion regime that has the benefits of low pollutant emissions (when operated at fuel lean conditions) and freedom from harmful flashback effects, combustion instabilities, and thermal meltdown problems that are normally associated with premixed combustion systems operating at high pressures.

Posted in: Briefs, Aerospace, Aviation, Energy


Selenium Interlayer for High-Efficiency Multi-Junction Solar Cell

This technology can be commercialized for terrestrial applications such as power plants and smart grid systems.Innovators at NASA’s Glenn Research Center have developed a low-cost, high-efficiency solar cell that uses a thin layer of selenium as the bonding material between wafers. Selenium is a semiconductor, and it is also transparent to light at photon energies below the band gap. The innovation allows a multi-junction solar cell to be developed without the constraint of lattice matching, and uses a low-cost, robust silicon wafer as the supporting bottom substrate and bottom cell. This enables a cell that is simultaneously lower in cost, more rugged, and more efficient than existing space solar cell designs. This technology has the potential to be used in next-generation solar cells in space, and it can be commercialized for terrestrial applications such as power plants and smart grid systems.

Posted in: Briefs, Solar Power


Tethered Vehicle Control and Tracking System

The system enables effective operation of airborne wind energy (AWE) generation systems.NASA’s Langley Research Center has developed hardware and software to track the flight of tethered vehicles, including kite-like, airborne wind energy (AWE) generation systems. The control system consists of a pan-tilt platform and a visible-spectrum digital camera, combined with tracking control software running on a standard PC. The system controls the flight of the vehicle to keep its position on a power-producing trajectory, maximizing velocity (but within limits). This trajectory produces tension, which turns the ground-based generator, producing the energy. The NASA system enables effective operation of groundgen or flygen types of AWE systems. NASA has a working prototype and pre-beta software, and is seeking development partners to make it more robust and user-friendly by testing it in real-world systems.

Posted in: Briefs, Aerospace, Aviation


Preventing Cell-to-Cell Thermal Runaway in Lithium-Ion Battery Modules

Lithium-ion (Li-ion) cells are increasingly used in high-voltage and high-capacity modules. The Li-ion chemistry has the highest energy density of all rechargeable battery chemistries, but associated with that energy is the issue of catastrophic thermal runaway with a fire. With recent incidents in the commercial aerospace and electronics sectors, it was necessary to find methods to prevent cell-to-cell thermal runaway propagation.

Posted in: Briefs, Batteries


System and Method for Space Utilization Optimization and Visualization

The program uses a standard Web browser to allow for visualization of an entire organization down to individual rooms.NASA’s Langley Research Center has developed a space-allocation and planning software system to allow for more effective and efficient facility usage. It also provides a customizable strategy for organizing personnel and project teams to maximize productivity and synergies among employees. Cost-reduction solutions are suggested based on organizational input constraints related to the facility. The program uses a standard Web browser to allow for visualization of an entire organization down to individual rooms. The planning tool is based on algorithms that were developed using ArcGIS software and Visual Basic codes, which enable evaluation of different space-management scenarios in real time.

Posted in: Briefs, Software


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.