Home

Method of Performing Computational Aeroelastic Analyses

This technology can be used for dynamic behavioral models of large buildings, bridges, dams, and towers. NASA’s Langley Research Center has developed unsteady aerodynamic Reduced-Order Models (ROMs) that significantly improve computational efficiency compared to traditional analyses of aeroelastic and other complex and unsteady systems. Traditional methods rely on the repetitive use of aeroelastic computational fluid dynamics (CFD) codes, and the iteration between the structural and nonlinear aerodynamic models of the aeroelastic CFD code for predicting the aeroelastic response of flight vehicles is very time-consuming and computationally expensive. The new ROMs are quite different from the traditional aeroelastic analysis tools, and enable the computational aeroelastic analysis of flight vehicles at a fraction of the time and cost.

Posted in: Briefs, Software

Read More >>

Fourier Transform Spectrometer Performance Modeling

This software models the performance of a Fourier transform spectrometer (FTS). More specifically, it is able to add a number of noise/error sources to the interferogram and transform the errors back to the spectral domain.

Posted in: Briefs, Software

Read More >>

Mesh Adaptation Module for Cartesian Meshes with Embedded Boundaries

Future applications include rapid prototyping, computer-based imaging and visualization, and semiconductor device modeling. This work extends the mesh generation capability of NASA’s Cart3D flow simulation software package to permit cell-by-cell mesh enrichment. Cart3D allows users to perform automated Computational Fluid Dynamics (CFD) analysis on a complex geometry. It includes utilities for geometry import, surface modeling and intersection, mesh generation, flow simulation, and post-processing of results. Geometry enters into Cart3D in the form of surface triangulations that may be generated from within Computer-Aided Design (CAD) packages, from legacy surface triangulations, or from structured surface grids. Cart3D uses adaptively refined Cartesian grids to discretize the space surrounding geometry, and cuts the geometry out of the set of cut-cells that actually intersects the surface triangulation.

Posted in: Briefs, Software

Read More >>

3D Imaging Laser System

The system achieves high-resolution, real-time, three-dimensional imaging using an innovative single lens system. Goddard Space Flight Center, Greenbelt, Maryland NASA’s Goddard Space Flight Center has developed a non-scanning, 3D imaging laser system that uses a simple lens system to simultaneously generate a one-dimensional or two-dimensional array of optical (light) spots to illuminate an object, surface, or image to generate a topographic profile.

Posted in: Briefs, Imaging

Read More >>

Smart Image Enhancement Process

Applications include improving pilot vision, real-time digital enhancement of videos, medical imaging, and thermal and night vision for surveillance systems. Langley Research Center, Hampton, Virginia NASA’s Langley Research Center researchers have developed an automatic measurement and control method for smart image enhancement. Pilots, doctors, and photographers will benefit from this innovation that offers a new approach to image processing. Initial advantages will be seen in improved medical imaging and nighttime photography. Standard image enhancement software is unable to improve poor quality conditions such as low light, poor clarity, and fog-like conditions. The technology consists of a set of comprehensive methods that performs well across a wide range of conditions encountered in arbitrary images. Conditions include large variations in lighting, scene characteristics, and atmospheric (or underwater) turbidity variations. NASA is seeking market insights on commercialization of this new technology, and welcomes interest from potential producers, users, and licensees.

Posted in: Briefs, Imaging

Read More >>

Compact Thermal Neutron Imaging System Using Axisymmetric Focusing Mirrors

This technology uses grazing incidence reflective optics to produce focused beams of neutrons from commercially available sources. Marshall Space Flight Center, Alabama NASA’s Marshall Space Flight Center has developed novel neutron grazing incidence optics for use with small-scale portable neutron generators. The technology was developed to enable the use of commercially available neutron generators for applications requiring high flux densities, including high-performance imaging and analysis. Nested grazing incidence mirror optics, with high collection efficiency, are used to produce divergent, parallel, or convergent neutron beams. Ray tracing simulations of the system (with source-object separation of 10 m for 5 meV neutrons) show nearly an order of magnitude neutron flux increase on a 1-mm-diameter object. The technology is a result of joint development efforts between NASA and MIT researchers seeking to maximize neutron flux from diffuse sources for imaging and testing applications.

Posted in: Briefs, Imaging

Read More >>

High-Speed Edge-Detecting Circuit for Use with Linear Image Sensor

Applications include supersonic jets, manufacturing, lane line tracking for vehicle control, bar code scanners, and digital photography. John H. Glenn Research Center, Cleveland, Ohio A new smart camera developed at NASA’s Glenn Research Center has the ability to process and transmit valuable edge location data for the images that it captures — at a rate of over 900 frames per second. The camera was designed to operate as a component in an inlet shock detection system for supersonic jets. A supersonic jet cannot function properly unless the airflow entering the machine is compressed and slowed to subsonic speed in the inlet before it reaches the engine. When supersonic air is compressed, it forms shock waves that can destroy the turbofan and surrounding components unless they are pinpointed and adjusted. This smart camera uses an edge detection signal processing circuit to determine the exact location of shock waves, and sends the location information via an onboard microcontroller or external digital interface. This highly customizable camera’s ability to quickly identify precise location data makes it ideal for a variety of other applications where high-speed edge detection is needed.

Posted in: Briefs, Imaging

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.