Home

Multi-Step DRIE Process to Fabricate Silicon-Based THz Components

Commercial applications include airport screening systems, explosives detectors, nondestructive testing, and wireless communications. NASA’s Jet Propulsion Laboratory, Pasadena, California Terahertz (THz) frequency radiometers, spectrometers, and radars are promising instruments for the remote sensing of planetary atmospheres such as Mars, Venus, Jupiter, and Saturn, and their moons such as Titan, Europa, Ganymede, and others. For these long-term planetary missions, severe constraints are put on the mass and power budget for the payload instruments.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Plasma Reduction of Lunar Regolith for In-Space Fabrication

Plasma processing effectively produced agglutinate and glassy spherules — analog particles similar to those found on the lunar surface. Marshall Space Flight Center, Alabama The in situ production of vital gases and raw materials on the lunar surface is an integral part of NASA’s exploration vision. Development of processes for extraction of oxygen and metallics from the lunar regolith will be vital not only for life support on the lunar surface, but also for spacecraft propulsion to travel further beyond low Earth orbit. This will have a direct impact on cost reduction associated with minimizing the raw material mass from Earth. Aside from utilization of in situ resources, one of the significant limitations of current simulant is the lack of constituents, such as agglutinates. These agglutinates are typically mineral fragments of the lunar regolith that are held together by glass and, depending on location, may constitute 60% to 70% of the lunar regolith.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Method for Determining Self-Reacting Friction Stir Weld Schedules

This new process is quicker and more effective. Lyndon B. Johnson Space Center, Houston, Texas This invention establishes a process to define a viable self-reacting friction stir weld (SR-FSW) schedule (parameter settings) for a given material combination. The focus of this process results in a SR-FSW schedule that is insensitive to intentional changes or normal process variation in pin force at a given rotation and travel speed. Viable is defined as a weld schedule that is usable in a production environment and is able to accommodate normal production variations.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Flexible, Lightweight Vacuum Shell for Load-Responsive Multilayer Insulation for High Thermal Performance

There are substantial reductions in weight and improvements in performance. Goddard Space Flight Center, Greenbelt, Maryland Better thermal insulation is needed to insulate cryogenic propellants used by NASA for launch vehicles, spacecraft, and orbiting fuel depots. In particular, cryotank insulation during in-air pre-launch and launch ascent stages currently uses spray-on foam insulation (SOFI), which is extremely problematic.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Bulk Separation and Manipulation of Carbon Nanotubes by Type

Lyndon B. Johnson Space Center, Houston, Texas The utility of this invention is to extract metals (semi-metals) or semiconductors from bulk nanotube samples. The bulk material is a mixture of the two. These materials can then be used to clone a particular type of nanotube, place a particular type in a device, generate smart materials, or make sensing elements.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

PICA-on-Edge

This material fills gaps between adjacent PICA blocks. Langley Research Center, Hampton, Virginia The current baseline ablator material for the Advanced Development Program (ADP) for the thermal protection system (TPS) of the Orion heat shield is phenolic impregnated carbon ablator (PICA). PICA is a low-density, low-strength material that must be isolated from mechanically and thermally induced deformations and strains of the underlying heat shield carrier structure. The current invention is being developed to provide a means of eliminating gaps between adjacent PICA blocks by filling the gaps with a compatible, relatively soft material that alleviates thermal and mechanical stresses that would occur in rigidly bonded PICA blocks. An ideal gap material should have comparable thermal and ablative performance to PICA, and have low enough porosity to prevent hot gas flow in the gap. It must be compliant enough that adjacent PICA blocks can move somewhat independently of each other and the underlying carrier structure to reduce thermal and mechanical stresses to acceptable levels.

Posted in: Materials, Briefs, TSP

Read More >>

Layered Composite Thermal Insulation System for Non-Vacuum Applications

The new blanket-type system is suitable for extreme outdoor environments. John F. Kennedy Space Center, Florida Ambient air insulation systems for low-temperature (sub-ambient) applications are difficult to achieve because of moisture ingress and environmental degradation, as well as thermal stress-cracking. Most currently accepted methods for externally applied outdoor environments are fraught with problems centered around moisture and sealing.

Posted in: Materials, Briefs

Read More >>