Home

Auto-Balancing Series-Stacked Input DC-DC Converter

This invention could enable practical, reliable, and efficient power conversion in high-voltage DC systems without power level limitation.ADC-DC converter that can operate from a high input voltage is needed for future high-power space applications. However, the selection of space-qualified, high-voltage transistors and filter capacitors for such a converter are very limited. The available high-voltage components have lower performance than lower-voltage components. One possible solution to this problem is connecting in series the inputs of multiple converters to lower the input voltage at the individual converter inputs. However, because of component tolerances, performance degradation, and transient events, this can result in an unbalanced voltage distribution throughout the various inputs. Excessive voltage on any of the stacked converters can damage components and cause a catastrophic failure. A circuit that could inherently balance the voltage between the inputs of multiple low-voltage DCDC converters would have better performance and reliability.

Posted in: Briefs, Board-Level Electronics, Electronics & Computers, Power Management

Read More >>

Larger-Area Integrated Electrical Metallization Dielectric Structures with Stress-Managed Unit Cells for Extreme- Environment Semiconductor Electronics Chips

Electronic circuits that operate in high temperatures are used in automobiles, airplanes, oil drilling operations, and many other applications.The use of patterned multiple layers of thin films of metal and dielectric to form integrated circuit interconnections of transistors and/or form on-chip circuit capacitors is well known to those skilled in the art of semiconductor microelectronic fabrication. Because differing layers of thin film materials have different physical and thermal expansion properties, it is also well known that stress is inherently present in these multilayer film structures on a microelectronic chip. The amount of stress changes with temperature and as a function of lateral feature size/area across the chip. When stress anywhere within a patterned metal film feature becomes critically large (i.e., the “yield stress” is exceeded), the metal film can physically crack, buckle, or delaminate from other layers, which usually damages/fails the intended electrical operation of the microelectronic circuit.

Posted in: Briefs, Electronics & Computers

Read More >>

New Stamping Technique Enables Printable Electronics

The carbon nanotube stamp can print electronic inks onto rigid and flexible surfaces. (Sanha Kim and Dhanushkodi Mariappan) The next time you place your coffee order, imagine slapping onto your to-go cup a sticker that acts as an electronic decal, letting you know the precise temperature of your coffee. Engineers at MIT have invented a fast, precise printing process that may make such electronic surfaces an inexpensive reality. The stamp is made from forests of carbon nanotubes and can print electronic inks onto rigid and flexible surfaces. The stamping process should be able to print transistors small enough to control individual pixels in high-resolution displays and touchscreens. It could also offer a relatively cheap, fast way to manufacture electronic surfaces for as-yet-unknown applications.

Posted in: UpFront, Electronics

Read More >>

Performance Characteristics of Digital Frequency Discriminators

Digital frequency discriminators are key components of instantaneous frequency measurement (IFM) receiver systems as well as many other complex electronic warfare (EW) systems. However, to obtain optimum results it is essential to match DFD performance levels to a specific application. DFDs are integral components of IFM receiver systems; they may also be imbedded into a wide range of military systems such as radar warning receivers (RWRs), electronic countermeasures (ECM) systems, and electronic support measures (ESM) platforms, where they help provide instantaneous frequency measurement capability.

Posted in: White Papers, White Papers, Electronics & Computers

Read More >>

High-Speed Switched Serial Fabrics Improve System Design

Well into its third decade of widespread deployment, VME adopted the new VXS gigabit serial interface, clearly representing the most significant leap in backplane data transfer rates throughout its entire history. Because VXS delivered such a dramatic improvement in embedded system performance, the use of gigabit serial technology was extended to create VPX. The OpenVPX initiative followed shortly thereafter, as risk-averse government agencies mandated the need for industry-wide standards. The hallmark of any successful standard is that it continues to evolve with technology, and none offers a better example than VME’s evolution to VXS and VPX.

Posted in: White Papers, White Papers, Electronics & Computers

Read More >>

High-Speed Real Time Recording Systems

In today’s world of high-speed A/D converters operating in the gigahertz range, real-time signal recording has become a challenging task that requires specialized hardware and intelligent application software. When designing a real-time recorder capable of streaming sustained data to disk at rates of up to 5 GB/sec and higher, the system developer has to consider the limitations presented by the recorder’s operating and file systems, the limitations of disk drive technology, the hardware interfaces, and the RAID controller technology.

Posted in: White Papers, White Papers, Electronics & Computers

Read More >>

Putting FPGAs to Work in Software Radio Systems

FPGAs have become an increasingly important resource for software radio systems. Programmable logic technology now offers significant advantages for implementing software radio functions such as DDCs (Digital Downconverters). Over the past few years, the functions associated with DDCs have seen a shift from being delivered in ASICs (Application-Specific ICs) to operating as IP (Intellectual Property) in FPGAs.

Posted in: White Papers, White Papers, Electronics & Computers, Semiconductors & ICs

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.