Ultra-High-Power W-Band/F-Band Schottky Diode-Based Frequency Multipliers

These multipliers can be used in millimeter-wave radars or radiometers in national security applications such as standoff personnel screening, mass transit security, and perimeter intrusion.All-solid-state, room-temperature, multipixel, sub milli meter-wave re ceiv ers are in demand for efficient spatial mapping of a planet’s atmosphere composition and wind velocities for future NASA missions to Venus, Jupiter, and its moons. Roomtemperature operation based on Schottky diode technology is a must in order to avoid cryogenic cooling and enable long-term missions. This technology is also being successfully applied for very-high-resolution imaging radars for standoff detection of concealed weapons. For submillimeter-wave radar imaging, the main issue is that, in order to reach video frame rates with high image pixel density, multi-pixel focal plane transceiver arrays are needed to illuminate targets with many radar beams simultaneously.

Posted in: Briefs, Electronics & Computers, Amplifiers, Imaging and visualization, Radar


FPGA Reconfiguration with Accelerated Bitstream Relocation

Goddard Space Flight Center, Greenbelt, Maryland Partial bitstream relocation (PBR) on field programmable gate arrays (FPGAs) is a technique to re-scale parallelism of accelerator architectures at run time and enhance fault tolerance. PBR techniques have focused on reading inactive bitstreams stored in memory, on-chip or off-chip, whose contents are generated for a specific partial reconfiguration region (PRR) and modified on demand for configuration into a PRR at a different location.

Posted in: Briefs, TSP, Electronics & Computers, Architecture, Computer software and hardware, Data exchange


Real-Time LiDAR Signal Processing FPGA Modules

Goddard Space Flight Center, Greenbelt, Maryland A scanning LiDAR, by its inherent nature, generates a great deal of raw digital data. To generate 3D imagery in real time, the data must be processed as quickly as possible. One method of discerning time-of-flight of a laser pulse for a LiDAR application is correlating a Gaussian pulse with a discretely sampled waveform from the LiDAR receiver.

Posted in: Briefs, TSP, Electronics & Computers, Imaging and visualization, Lidar


Advanced, Ultra-Low-Loss, High-Frequency Package Module

This module could improve performance of radiometers, high-resolution spectrometers, radars, and communication receivers and/or transmitters.As electronic circuits approach submillimeter wavelength frequencies (300 GHz) and higher, the traditional low-loss method of packaging electronic circuits in waveguide modules for guiding the signal requires more attention. The reasons are that circuits at higher frequencies have lower signal power levels due to limited gain and output power of semiconductor devices. As a result, the power lost by signals in the waveguide propagation environment becomes even more important at higher frequencies. In addition, previous efforts have based higher-frequency waveguide modules on existing lower-frequency module concepts and internal components.

Posted in: Briefs, Electronics & Computers, Semiconductor devices, Waveguides


Next-Generation Electronics Innovations for NASA’s Space and Commercial Future

In 1964, NASA’s Electronics Research Center (ERC) opened in Massachusetts, serving to develop the space agency’s in-house expertise in electronics during the Apollo era. The center’s accomplishments include development of a high-frequency (30-GHz) oscillator, a miniaturized tunnel-diode transducer, and a transistor more tolerant of space radiation. Another development was in the area of holography. At the ERC, holography was “used for data storage, and has permitted a remarkable degree of data compression in the storing of star patterns.”

Posted in: Articles, Aerospace, Electronics, Electronic equipment, Product development


How to Avoid PCB Re-spins when IC’s Change or are Obsoleted

Working with printed circuit boards (PCBs) for sophisticated military, aerospace, or medical systems can be a frustrating – and expensive – exercise, particularly when the customer requests “a simple upgrade” or modification after the boards have been made or after deployment. Thanks to Murphy’s Law, these “simple upgrades” are never as simple as they should be. Aries has developed a unique solution that can save you from having to re-spin your PCB due to IC obsolescence or package change.

Posted in: On-Demand Webinars, Electronics, Semiconductors & ICs


EADIN Lite Communication Network

DEC is part of the Transformational Tools and Technologies (TTT) project under the Advanced Aeronautics research program. John H. Glenn Research Center, Cleveland, Ohio The distributed engine controls (DEC) task seeks to investigate the capabilities of a distributed network for aircraft engine controls. Traditional aircraft engine control systems use analog systems to communicate with sensors and actuators. The ability to upgrade an engine after manufacture, by swapping out sensors or actuators, is limited due to the analog signal component. Digital signals do not have this limitation, and additionally they do not require dedicated cabling, which may decrease engine weight. To understand the interactions between a new digital network and the engine controller, a representative model of the networks is required.

Posted in: Briefs, TSP, Electronic Components, Electronics & Computers, Engine control systems


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.