Home

Power Management System Keeps SpaceCube Flying

UltraCMOS®-based power management card Peregrine Semiconductor Corp. San Diego, CA 858-731-9400 www.psemi.comSelected for NASA Goddard Space Flight Center’s SpaceCube 2.0 Hybrid Science Data Processor, Peregrine’s UltraCMOS®-based power management solution is delivering uninterrupted high performance while meeting the radiation-hardened and extreme-temperature requirements on the International Space Station. The regulators feature integrated switches that help the design team meet its goals of delivering order-of-magnitude improvements in on-orbit computing performance over traditional flight computing systems.

Posted in: Application Briefs, Electronics & Computers, Power Management

Read More >>

Automotive Circuit Protection Using High-Reliability TVS Diodes

Diode technology eliminates transient surges and enhances vehicle safety. Designing automotive electronics presents numerous technical challenges, including the need to protect against electrical hazards. The three major sources of electrical hazards in automotive systems are electrostatic discharge (ESD), switching loads in power electronics circuits, and lightning. Overcoming these transient surges that can harm the vehicle’s electronics, whether under the hood or in the cabin, is one of the biggest obstacles of system design.

Posted in: Briefs, Automotive, Electronics & Computers, Power Management

Read More >>

A Resistive, High-Voltage, Differential Input Interface in a 3.3-V BiCMOS 0.5-μm Process for Extreme Environments

NASA’s Jet Propulsion Laboratory, Pasadena, California Wide-temperature and extreme-environment electronics are crucial to future missions. These missions will not have the weight and power budget for heavy harnesses and large, inefficient warm boxes. In addition, extreme-environment electronics, by their inherent nature, allow operation next to sensors in the ambient environment, reducing noise and improving precision over the warm-box-based systems employed today.

Posted in: Briefs, TSP, Electronics & Computers, Power Management, Semiconductors & ICs, Sensors

Read More >>

Precision Current Input With Well-Defined Current Limiting for Extreme Environment Applications

NASA’s Jet Propulsion Laboratory, Pasadena, California Wide temperature and extreme environment electronics are crucial to future missions. These missions will not have the weight and power budget for heavy harnesses and large, inefficient warm boxes. In addition, extreme environment electronics, by their inherent nature, allow operation next to sensors in the ambient environment, reducing noise and improving precision over the warm-box-based systems employed today.

Posted in: Briefs, TSP, Electronics & Computers, Power Management, Sensors

Read More >>

Wearable Nanowire Sensors Monitor Electrophysiological Signals

Researchers from North Carolina State University have developed a new, wearable sensor that uses silver nanowires to monitor electrophysiological signals, such as electrocardiography (EKG) or electromyography (EMG). The new sensor is as accurate as the “wet electrode” sensors used in hospitals, but can be used for long-term monitoring and when a patient is moving.

Posted in: News, News, Electronic Components, Electronics & Computers, Medical, Patient Monitoring, Nanotechnology, Semiconductors & ICs, Sensors

Read More >>

Aircraft with Hybrid Engine Can Recharge in Flight

Researchers from the University of Cambridge, in association with Boeing, have successfully tested the first aircraft to be powered by a parallel hybrid-electric propulsion system, where an electric motor and gas engine work together to drive the propeller. The demonstrator aircraft uses up to 30% less fuel than a comparable plane with a gas-only engine. The aircraft is also able to recharge its batteries in flight, the first time this has been achieved.

Posted in: News, Aerospace, Aviation, Batteries, Electronics & Computers, Power Management, Green Design & Manufacturing, Motion Control, Motors & Drives, Power Transmission

Read More >>

Technology Diagnoses Brain Damage from Concussions, Strokes, and Dementia

New optical diagnostic technology developed at Tufts University School of Engineering promises new ways to identify and monitor brain damage resulting from traumatic injury, stroke, or vascular dementia in real time and without invasive procedures.

Posted in: News, Electronic Components, Electronics & Computers, Diagnostics, Medical, Fiber Optics, Optics, Photonics, Semiconductors & ICs, Measuring Instruments, Test & Measurement

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.