Home

Garnet Ceramics Could Be the Key to High-Energy Lithium Batteries

Scientists at the Department of Energy’s Oak Ridge National Laboratory have discovered exceptional properties in a garnet material that could enable development of higher-energy battery designs. The ORNL-led team used scanning transmission electron microscopy to take an atomic-level look at a cubic garnet material called LLZO. The researchers found the material to be highly stable in a range of aqueous environments, making the compound a promising component in new battery configurations.

Posted in: News, Batteries, Electronic Components, Power Management, Energy Efficiency, Ceramics

Read More >>

Ultrasound Creates 3D Haptic Shapes

Touch feedback, known as haptics, has been used in entertainment, rehabilitation, and even surgical training. University of Bristol researchers, using ultrasound, have developed an invisible 3D haptic shape that can be seen and felt.Led by Dr Ben Long and colleagues Professor Sriram Subramanian, Sue Ann Seah, and Tom Carter from the University of Bristol’s Department of Computer Science, the research could change the way 3D shapes are used.  The new technology could enable surgeons to explore a CT scan by enabling them to feel a disease, such as a tumor, using haptic feedback.By focusing complex patterns of ultrasound, the air disturbances can be seen as floating 3D shapes. Visually, the researchers have demonstrated the ultrasound patterns by directing the device at a thin layer of oil so that the depressions in the surface can be seen as spots when lit by a lamp.The system generates an invisible three-dimensional shape that can be added to 3D displays to create an image that can be seen and felt. The research team have also shown that users can match a picture of a 3D shape to the shape created by the system. SourceAlso: Learn about an Ophthalmic Ultrasound System for Ocular Structures.

Posted in: News

Read More >>

New Compounds Developed to Manufacture Tunable OLED Devices

Researchers have developed new organic compounds characterized by higher modularity, stability, and efficiency that could be applicable for use in electronics or lighting. A proof-of-concept project has begun to verify that the compounds have the photoluminescence and electrochemical properties required for the manufacture of tunable organic LEDs (OLEDs) that can emit in the blue portion of the visible spectrum, thus applying lower voltages and achieving greater efficiency and longer life.

Posted in: News, Energy Efficiency, OLEDs

Read More >>

NASA's Hot 100 Technologies: Electrical/Electronics

High-Field Superconducting Magnets This technology represents a significant improvement over commercial state-of-the-art magnets. These superconducting magnets are very versatile and can be used in a number of applications requiring magnetic fields at low temperature, such as in MRI machines, mass spectrometers, and particle accelerators.

Posted in: Articles, Techs for License, Electronics

Read More >>

High-Performance Computing Drives A Growing, Evolving Internet of Things

Not too long ago, the idea of bringing intelligence to physical objects in our world and interconnecting them might have seemed like science fiction. Yet it is happening right now, as the phenomenon we call the Internet of Things (IoT) takes shape.

Posted in: White Papers

Read More >>

The Self-Driving Car

Since the first demonstration of a radio-controlled car in 1925, the automotive industry has been seeking to build a reliable driverless vehicle. The safety of robot-quick reflexes and predictive algorithms, combined with the convenience of effortless travel, is appealing. For those who cannot physically drive, an autonomous car allows a new level of freedom. Of the 5.5 million car crashes per year in the United States, 93 per- cent of them have a human cause as the primary factor.1 A self-driving car could reduce such accidents and, as a bonus, use its predictive driving to reduce fuel consumption and traffic congestion.

Posted in: White Papers

Read More >>

Technique Generates Electricity from Mechanical Vibrations

Research scientists at VTT Technical Research Centre of Finland have demonstrated a new technique for generating electrical energy. The method can be used in harvesting energy from mechanical vibrations of the environment and converting it into electricity. Energy harvesters are needed in wireless self-powered sensors and medical implants, where they could ultimately replace batteries. The technology could be introduced on an industrial scale within three to six years.

Posted in: News, Power Management, Energy Harvesting

Read More >>