Home

Nanomaterial Extends Lithium-Sulfur Battery Lifespan

A new nanomaterial could extend the lifespan of lithium-sulfur batteries, and therefore the driving range of electric vehicles.Pacific Northwest National Laboratory researchers added the powder to the battery's cathode to capture problematic polysulfides that usually cause lithium-sulfur batteries to fail after a few charges.Metal organic frameworks — also called MOFs — are crystal-like compounds made of metal clusters connected to organic molecules, or linkers. Together, the clusters and linkers assemble into porous 3-D structures. During lab tests, a lithium-sulfur battery with PNNL's MOF cathode maintained 89 percent of its initial power capacity after 100 charge-and discharge cycles. Having shown the effectiveness of their MOF cathode, PNNL researchers now plan to further improve the cathode's mixture of materials so it can hold more energy.SourceAlso: Check out other Materials tech briefs.

Posted in: Batteries, Electronics & Computers, Power Management, Materials, Metals, Nanotechnology, News

Read More >>

Transient Electronics Dissolve When Triggered

An Iowa State research team led by Reza Montazami is developing "transient materials" and "transient electronics" that can quickly and completely melt away when a trigger is activated. The development could mean that one day you might be able to send out a signal to destroy a lost credit card.To demonstrate that potential, Montazami played a video showing a blue light-emitting diode mounted on a clear polymer composite base with the electrical leads embedded inside. After a drop of water, the base and wiring began to melt away. As the technology develops, Montazami sees more and more potential for the commercial application of transient materials. A medical device, once its job is done, could harmlessly melt away inside a person’s body. A military device could collect and send its data and then disappear, leaving no trace of an intelligence mission. An environmental sensor could collect climate information, then wash away in the rain. SourceAlso: Read other Electronics & Computers tech briefs.

Posted in: Electronics & Computers, Electronic Components, Electronics, Environmental Monitoring, Green Design & Manufacturing, Materials, Composites, Plastics, Medical, Lighting, LEDs, Semiconductors & ICs, Defense, News

Read More >>

Wireless Device Senses Chemical Vapors

A research team at the Georgia Tech Research Institute (GTRI) has developed a small electronic sensing device that can alert users wirelessly to the presence of chemical vapors in the atmosphere. The technology, which could be manufactured using familiar aerosol-jet printing techniques, is aimed at myriad applications in military, commercial, environmental, and healthcare areas.The current design integrates nanotechnology and radio-frequency identification (RFID) capabilities into a small working prototype. An array of sensors uses carbon nanotubes and other nanomaterials to detect specific chemicals, while an RFID integrated circuit informs users about the presence and concentrations of those vapors at a safe distance wirelessly.Because it is based on programmable digital technology, the RFID component can provide greater security, reliability and range – and much smaller size – than earlier sensor designs based on non-programmable analog technology. The present GTRI prototype is 10 centimeters square, but further designs are expected to squeeze a multiple-sensor array and an RFID chip into a one-millimeter-square device printable on paper or on flexible, durable substrates such as liquid crystal polymer.SourceAlso: Learn about Extended-Range Passive RFID and Sensor Tags.

Posted in: Electronics & Computers, Electronic Components, Electronics, Manufacturing & Prototyping, Environmental Monitoring, Green Design & Manufacturing, Sensors, Detectors, Medical, Communications, Wireless, RF & Microwave Electronics, Semiconductors & ICs, Nanotechnology, Defense, News

Read More >>

Scientists Demonstrate Electrical Properties of Topological Insulators

Scientists at the U.S. Naval Research Laboratory (NRL) have demonstrated for the first time that one can electrically access the remarkable properties predicted for a topological insulator (TI). They used a ferromagnetic metal/tunnel barrier contact as a voltage probe to detect the spin polarization created in the topologically protected surface states when an unpolarized bias current is applied. This accomplishment identifies a successful electrical approach that provides direct access to the TI surface state spin system, significantly advances our fundamental understanding of this new quantum state, and enables utilization of the remarkable properties these materials offer for future technological applications.

Posted in: Electronics & Computers, Electronic Components, Board-Level Electronics, Power Management, Semiconductors & ICs, News

Read More >>

Engineers Design Software Tools to Secure Tactical Smartphones

Suraj Kothari's talk of smartphone security quickly took a turn toward sabotage and worst-case scenarios. What happens, he asked, if a soldier's smartphone is hacked for its GPS data? What happens if an attacker drains the battery in a general's phone and essential communication is cut off? Or, what happens if a hacked phone provides false information during a military mission?

Posted in: Electronics & Computers, PCs/Portable Computers, Software, Defense, News

Read More >>

Smartphones Become "Eye-Phones" to Capture Images of the Eye

Two inexpensive adapters enable a smartphone to capture high-quality images of the front and back of the eye, enabling users to share them securely with other health practitioners or store it in a patient's electronic record. The researchers see this technology as an opportunity to increase access to eye-care services as well as to improve the ability to advise on patient care remotely.

Posted in: Electronics & Computers, PCs/Portable Computers, Imaging, Medical, Patient Monitoring, Diagnostics, News

Read More >>

Bending Light with a Tiny Chip

Imagine that you are in a meeting with coworkers or at a gathering of friends. You pull out your cell phone to show a presentation or a video on YouTube. But you don't use the tiny screen; your phone projects a bright, clear image onto a wall or a big screen. Such a technology may be on its way, thanks to a new light-bending silicon chip developed by researchers at Caltech.

Posted in: Electronics & Computers, Electronic Components, Board-Level Electronics, Photonics, Optics, Optical Components, Semiconductors & ICs, News

Read More >>