High-Precision Thin Film Metal Liftoff Technique

This process can be used by industries that need to fabricate microelectronic devices and superconducting sensors.

Goddard Space Flight Center, Greenbelt, Maryland

The objective of this work was to develop a thin film metal liftoff process that would allow one to accurately pattern two-micron-wide (or wider) features. The goal of this innovation was to pattern thin metal films on silicon substrates. The thin metal films can be deposited using physical vapor deposition techniques. The metallic films to be lifted off were deposited via DC magnetron sputtering, in which the mean free path of the metal atoms to be deposited is on the order of one micron. Thus, the deposited metal could conformally coat structures to fill in gaps that were greater than approximately one micron tall.

Posted in: Briefs, TSP, Manufacturing & Prototyping, Coatings, colorants, and finishes, Metals, Polymers

Process for 3D Printer Filament Fabrication

Marshall Space Flight Center, Alabama

Conventional filament extrusion processes are unsuitable for recycling materials on the International Space Station due to requirements for continuous monitoring and tuning, as well as poor filament dimensional control. The Positrusion process recycles scrap or waste thermoplastics into filament for 3D fused filament fabrication (FFF) printers.

Posted in: Briefs, Manufacturing & Prototyping, Recycling, Fabrication, Plastics

Method for Decreasing Additive Manufacturing Build Times Using Arrays of Multiple Deposition Heads

3D printing several parts simultaneously enables increased speed for mass production.

Additive manufacturing (AM, also informally known as 3D printing) is a relatively new process for fabricating net- shaped parts from a computer-generated drawing. The inherent problem with using AM in mass production is the slow build times for each part. Because parts must be built layer by layer, the build time cannot be dramatically increased. The build time is limited by the physical melting and consolidation of plastic or metal, which cannot be dramatically speeded up, and the velocity of the build head, which is limited by the mechanical motion mechanism. One solution to the inherently slow build times is to replicate the building head, while replicating as few of the other machine components as possible. Utilizing this technique, the fabrication time per part can be reduced by the number of simultaneous building heads, which may make the AM process suitable for some mass production.

Posted in: Briefs, Manufacturing & Prototyping, Manufacturing processes

Electropolishing in Pneumatics and Hydraulics

This single-process finishing method can be employed for virtually any metal alloy.

Able Electropolishing, Chicago, Illinois

Manufacturing reliable, high-performing parts and components that have extended lifecycles is crucial for the pneumatics and hydraulics industry. From springs to fittings, the performance of each these manufactured parts and components is essential to the operation of machinery used in a variety of disciplines in the pneumatics and hydraulics industry. When reliability, functionality, performance, and life of metal parts are paramount, electropolishing is a single-process metal finishing method that effectively meets the challenges.

Posted in: Briefs, Manufacturing & Prototyping, Metal finishing, Hydraulic systems, Pneumatic systems

Reusable Integrated Instrument Control and Computing Platform

This reusable hardware/software platform has applications in embedded systems and digital signal processing applications in small spacecraft, airborne avionics, and instrument electronics.

NASA’s Jet Propulsion Laboratory, Pasadena, California

ISAAC (Instrument Shared Artifact for Computing) offers adaptability, computation power, I/O bandwidth, digital interface standards, and data processing capability in a single, common, low-mass/power, and small-form-factor platform with significantly reduced, nonrecurring cost and risk to Earth Science instruments such as SMAP/HYDROS and other NASA/JPL planetary exploration instruments with diverse requirements. This platform has six key components:

Posted in: Briefs, TSP, Electronics & Computers, Manufacturing & Prototyping, Computer software and hardware, Data management, Test equipment and instrumentation

Low-Density Flexible Ablators

Ames Research Center, Moffett Field, California

NASA has developed a class of low-density, flexible ablators that can be fabricated into heat shields capable of being packaged, stowed, and deployed in space. Several flexible versions have been developed by infiltrating a pyrolyzing silicone resin into flexible, low-density felts made of carbon, polymer, or ceramic materials. The material is produced by immersing a flexible fibrous substrate in a diluted polymer resin, curing the polymer resin using heat and/or catalyst, and removing the solvent.

Posted in: Briefs, Manufacturing & Prototyping, Insulation, Polymers, Resins, Spacecraft

Solar-Powered Carbon Dioxide Conversions with Thin-Film Devices

Ames Research Center, Moffett Field, California

A nanomaterial thin-film device provides a low-cost, facile fabrication pathway to commercialize the technology to the sustainable energy market. Metal oxide thin films have been fabricated to a photoelectrochemical cell by solar energy. The prototype device uses both low energy cost for manufacturing and low materials cost for devices. The self-modulated device platform can also find other applications in sensors and detectors. The resultant prototype device can be deployed to the automobile industry or power plants with very low initial costs. The device can also be made extremely compact and efficient. It uses solar energy as the only power source.

Posted in: Briefs, Manufacturing & Prototyping, Solar energy, Fabrication, Nanomaterials

Fiber Metal Laminates Made by the VARTM Process

Fiber metal laminates combine the best properties of the metal and composite.

Langley Research Center, Hampton, Virginia

Fiber metal laminates (FMLs) are multicomponent materials utilizing metals, fibers, and matrix resins. Tailoring their properties is readily achievable by varying one or more of these components. Two new processes for manufacturing FMLs using vacuum assisted resin transfer molding (VARTM) have been developed.

Posted in: Briefs, TSP, Manufacturing & Prototyping, Manufacturing processes, Coatings, colorants, and finishes, Fibers, Metals, Resins

Method to Produce Copper Nanowires for Interconnect Applications

Ames Research Center, Moffett Field, California

Copper replaced aluminum nearly two decades ago as interconnect material in integrated circuit manufacturing due to its better electrical conductivity. The size of the interconnect wire has been steadily decreasing as Moore’s law has been progressing through various feature size generations. The diameter of the interconnect structure is further expected to decrease as silicon technology is poised to march through a few more generations. Alternatives to copper have been reported—notably, materials such as carbon nanotubes. Their success has been limited, and carbon nanotubes have not been integrated into manufacturing practice.

Posted in: Briefs, Manufacturing & Prototyping, Wiring, Copper, Nanomaterials

Development of a Precision Thermal Doubler for Deep Space

A copper thermal doubler is used to spread the thermal loads.

Thermal requirements and a need for a very flat mechanical interface led to the development of a copper doubler for the titanium vault on the Juno Spacecraft. The vault is designed to contain the science instruments on the spacecraft, protecting them from damage due to the extreme radiation environment of Jupiter. The titanium used in the vault creates unwanted thermal effects due to the poor thermal conductivity of titanium. To remove heat from the telecommunication equipment mounted to the interior of the vault, a copper thermal doubler was used to spread the thermal loads over the entire area of the radiator (located on the outside of the vault), which decreased the effective thermal resistance through the vault wall. A method of bonding a copper doubler to the titanium preserves the mounting interface flatness to less than 0.005 in. (0.13 mm) while providing a superior thermal path to the radiators, which are fitted with thermal control louvers. The precisely controlled titanium surface, and that of the milled copper doubler with integral spacing features, provides the mechanical interface flatness, structural integrity, and thermal performance required by the telecommunications subsystem.

Posted in: Briefs, TSP, Manufacturing & Prototyping, Thermal management, Milling, Copper, Insulation, Titanium, Spacecraft

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.