Home

Manufacturing Process Management for Test

Test is critical to the board manufacturing process. Effective test ensures quality and customer satisfaction both for the OEM (original equipment manufacturer) and the CEM (contract electronics manufacturer). By isolating defects before product shipment, test minimizes returns and related costs. But test takes time, and the cost can be prohibitive.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Improved Process for Fabricating Carbon Nanotube Probes

An improved process has been developed for the efficient fabrication of carbon nanotube probes for use in atomic-force microscopes (AFMs) and nanomanipulators. Relative to prior nanotube tip production processes, this process offers advantages in alignment of the nanotube on the cantilever and stability of the nanotube's attachment. A procedure has also been developed at Ames that effectively sharpens the multiwalled nanotube, which improves the resolution of the multiwalled nanotube probes and, combined with the greater stability of multiwalled nanotube probes, increases the effective resolution of these probes, making them comparable in resolution to single-walled carbon nanotube probes. The robust attachment derived from this improved fabrication method and the natural strength and resiliency of the nanotube itself produces an AFM probe with an extremely long imaging lifetime. In a longevity test, a nanotube tip imaged a silicon nitride surface for 15 hours without measurable loss of resolution. In contrast, the resolution of conventional silicon probes noticeably begins to degrade within minutes. These carbon nanotube probes have many possible applications in the semiconductor industry, particularly as devices are approaching the nanometer scale and new atomic layer deposition techniques necessitate a higher resolution characterization technique. Previously at Ames, the use of nanotube probes has been demonstrated for imaging photoresist patterns with high aspect ratio. In addition, these tips have been used to analyze Mars simulant dust grains, extremophile protein crystals, and DNA structure. This NASA technology is being commercialized through Convergent Science and Technology Inc. ().

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Explosion Welding for Hermetic Containerization

There is no need to decontaminate the outside of the container. Figure 1. The Explosion Seals the Samples in the container while simultaneously excluding previous exterior container contamination from the clean environment.Figure 2. Sacrificial Metal is squeezed out, the container walls are cut, and the container walls are welded together on both sides of the cut.A container designed for storing samples of hazardous material features a double wall, part of which is sacrificed during an explosion-welding process in which the container is sealed and transferred to a clean environment. The major advantage of this container sealing process is that once the samples have been sealed inside, the outer wall of what remains of the container is a clean surface that has not come into contact with the environment from which the samples were taken. Thus, there is no need to devise a decontamination process capable of mitigating all hazards that might be posed by unanticipated radioactive, chemical, and/or biological contamination of the outside of the container. The container sealing method was originally intended to be used to return samples from Mars to Earth, but it could also be used to store samples of hazardous materials, without the need to decontaminate its outer surface.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Dry Process for Making Polyimide/Carbon-and-Boron-Fiber Tape

The tape has superior properties and can be used in automated tape placement. A dry process has been invented as an improved means of manufacturing composite prepreg tapes that consist of high- temperature thermoplastic polyimide resin matrices reinforced with carbon and boron fibers. Such tapes are used (especially in the aircraft industry) to fabricate strong, lightweight composite- material structural components. The inclusion of boron fibers results in compression strengths greater than can be achieved by use of carbon fibers alone.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Paint-Overspray Catcher

Turning airflow and entrained droplets would be drawn away. An apparatus to catch paint overspray has been proposed. Overspray is an unavoidable parasitic component of spray that occurs because the flow of air or other gas in the spray must turn at the sprayed surface. Very small droplets are carried away in this turning flow, and some land on adjacent surfaces not meant to be painted.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Relatively Inexpensive Rapid Prototyping of Small Parts

Paper drawings and the associated delays in fabrication are eliminated. Parts with complex three-dimensional shapes and with dimensions up to 8 by 8 by 10 in. (20.3 by 20.3 by 25.4 cm) can be made as unitary pieces of a room- temperature- curing polymer, with relatively little investment in time and money, by a process now in use at Johnson Space Center. The process is one of a growing number of processes and techniques that are known collectively as the art of rapid prototyping. The main advantages of this process over other rapid-prototyping processes are greater speed and lower cost: There is no need to make paper drawings and take them to a shop for fabrication, and thus no need for the attendant paperwork and organizational delays. Instead, molds for desired parts are made automatically on a machine that is guided by data from a computer-aided design (CAD) system and can reside in an engineering office.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Microscope Cells Containing Multiple Micromachined Wells

The cost per cell has been reduced substantially. An improved design for multiple-well microscope cells and an associated improved method of fabricating them have been devised. [As used here, "well" denotes a cavity that has a volume of about 1 or 2 µL and that is used to hold a sample for examination under a microscope. As used here, "cell" denotes a laminate, based on a standard 1- by 3-in. (2.54- by 7.62-cm) microscope slide, that comprises (1) the slide as the lower layer, (2) an intermediate layer that contains holes that serve as the wells, and (3) a top layer that either consists of, or is similar to, a standard microscope-slide cover slip.] The improved design and method of fabrication make it possible to increase (relative to a prior design and method of fabrication) the number of wells per cell while reducing the fabrication loss and reducing the cost per cell to about one-tenth of the prior value.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>