Home

Robotic Exoskeleton Vastly Improves Quality of Life

Worldwide an estimated 185 million people use a wheelchair daily. A company based in Auckland, New Zealand, has developed an innovative robotic technology that helps people with mobility impairment get back on their feet— the Rex Bionics robotic exoskeleton. Its integrated maxon motors help to ensure smooth limb movement.

Posted in: Rehabilitation & Physical Therapy, Implants & Prosthetics, Biosensors, Mechanical Components, Power Supplies, Electronics, Power Management, Manufacturing & Prototyping, Motion Control, Motors & Drives, Power Transmission, Positioning Equipment, Medical, Orthopedics, Articles, Features, MDB

Read More >>

Optimizing an Electromechanical Device with Multidimensional Analysis Software

Modern CAE software allows engineers to investigate a multitude of design variations that could not possibly be considered using conventional physical prototypes. In this paper we will first illustrate parametric methods for automatically creating virtual prototypes of electromechanical actuators (in our case simple electromagnetic solenoids) using the AMPERES and MAGNETO programs from INTEGRATED Engineering Software. We will then use a specific case study to show how the Tecplot Chorus program can assist in determining optimal design choices.

Posted in: Manufacturing & Prototyping, White Papers

Read More >>

Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between “containment plates,” past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

High-Powered, Ultrasonically Assisted Thermal Stir Welding

This method has the potential to increase the longevity of hardware in the auto industry, especially in bearing wear. This method is a solid-state weld process capable of joining metallic alloys without melting. The weld workpieces to be joined by thermal stir welding (TSW) are drawn, by heavy forces, between containment plates past the TSW stir tool that then causes joining of the weld workpiece.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Next-Generation MKIII Lightweight HUT/Hatch Assembly

Applications for general aviation include the insulation around fuel tanks, especially winglocated tanks. The MK III (H-1) carbon-graphite/ epoxy Hard Upper Torso (HUT)/Hatch assembly was designed, fabricated, and tested in the early 1990s. The spacesuit represented an 8.3 psi (≈58 kPa) technology demonstrator model of a zero prebreathe suit. The basic torso shell, brief, and hip areas of the suit were composed of a carbon-graphite/epoxy composite lay-up. In its current configuration, the suit weighs approximately 120 lb (≈54 kg). However, since future planetary suits will be designed to operate at 0.26 bar (≈26 kPa), it was felt that the suit’s redesigned weight could be reduced to 79 lb (≈35 kg) with the incorporation of lightweight structural materials.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>

Additive Manufactured Propulsion System (AMPS) for Small to Micro Cubical Satellites

A hybrid, single-part design was fabricated from a material that acts as both the structure and the fuel for the propulsion system. The use of additive manufacturing technologies in aerospace applications has presented both opportunities and challenges. The ability to produce parts and components using additive manufacturing holds promise in both metals and plastics, whereas traditional subtractive manufacturing can be restrictive in design development and material selection.

Posted in: Manufacturing & Prototyping, Briefs

Read More >>

Bismuth Passivation Technique for High-Resolution X-Ray Detectors

The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth- absorber-coupled X-ray sensors.

Posted in: Manufacturing & Prototyping, Briefs, TSP

Read More >>