Home

Lightweight, High-Strength Nanocomposite Magnesium for Radiators

New material offers an exceptional balance of properties and cost. Marshall Space Flight Center, Alabama The next generation of radiators will be designed using a composite with the combination of the lowest density, highest thermal conductivity, and highest strength. A scalable, low-cost process was developed to advance state-of-the-art metal matrix thermal conductors to reach a theoretical goal of 578 W/mK (270W/mK achieved), a density less than aluminum (1.7g.cc achieved), and a yield strength over 30 ksi (≈207 MPa, 42 ksi achieved). The incorporation of nanofibers into metals has been heavily researched to improve mechanical and thermal properties of materials, with limited technical and commercial success. The problem of incorporating high-aspect-ratio, high-surface-area particles (including fiber and flake) with controlled and repeatable concentration and distribution into molten metals is a large undertaking, and must factor in the molten metal temperature, composition, and surface tension. Direct feeding of the particles does not work, as particles burn, react with the molten metal, or do not stay in the metal. Other feeding mechanisms such as auger feeding into the metal, in-situ formation, and stir casting are cost-prohibitive and not always scalable.

Posted in: Briefs

Read More >>

Advanced Protective Coatings for Graphite Substrates

This innovation enables application of graphite components in a hydrogen environment at very high temperatures. John H. Glenn Research Center, Cleveland, Ohio The purpose of this innovation is to develop advanced multilayered coating architectures to protect graphite substrates from hot hydrogen attack. The concept consists of coating the graphite substrate with metallic and non-metallic layers consisting of ZrC; Nb, Mo, and/or Nb-Mo alloy; and/or Mo2C.

Posted in: Briefs, TSP

Read More >>

Plasma Extraction of Oxygen from the Martian Atmosphere

Microwave plasmas use systems that are smaller, lighter, and less complex than traditional reactors. Marshall Space Flight Center, Alabama Extraction of oxygen from the abundant carbon dioxide present on Mars (96% atmospheric composition) is an important objective in preparation for missions to the planet. Oxygen is not only a fundamental reactant with high-specific-energy chemical fuels such as hydrogen and methane, but, along with water, it is arguably one of the most critical resources for life support. Using microwave plasma techniques to decompose CO2 into CO and O2, coupled with a technology to separate O2 as it is produced, a robotic processor located on the Martian surface would allow oxygen to be stockpiled for later use. Using innovative standing-wave microwave plasma reactor designs, ubiquitous 2.45-GHz microwave technology was employed to demonstrate 86% single-pass carbon dioxide decomposition.

Posted in: Briefs

Read More >>

Application of Carbon Nanotube Hold-Off Voltage for Determining Gas Composition

Ames Research Center, Moffett Field, California In this innovation, a method and associated system have been created to vary a voltage applied to an exposed end of a carbon nanotube for a selected time interval to promote gas discharge, and to estimate a gas component involved in the discharge. Each component of a gas has a first, lower threshold discharge (voltage value, V∞) at which discharge can occur after a long time delay (t(V∞:ho)≈∞), where “ho” refers to a discharge voltage holdoff value. Application of a voltage V above this lower limit V∞ will cause the gas component to undergo a discharge after a discharge holdoff time t(V:ho) that decreases as V increases above V∞.

Posted in: Briefs

Read More >>

Electropolishing for Hydraulics and Pneumatics

Manufacturing components for the hydraulic and pneumatic industries often involve creating the ideal surface finish: neither too rough nor too smooth. When it comes to surface finish, electropolishing can help manufacturers walk that fine line and achieve the ultimate in function.

Posted in: White Papers, Electronics, Coatings & Adhesives

Read More >>

The Truth about Parylene Coating & Medical Devices

Parylene is the generic name for members of a unique polymer series. Parylene conformal coatings represent a distinct family of organic polymeric coating materials that are polycrystalline and linear in nature, with innumerable commercial applications. Resilient, dielectric, and pinhole-free, parylenes are frequently selected for use with products subjected to ongoing conditions of duress that might otherwise diminish their performance.

Posted in: White Papers, White Papers, Coatings & Adhesives

Read More >>

Design to Manufacturing: Complete Support for High-Precision Components

The medical device, aerospace, and automotive industries are fast-moving, complex, and highly competitive. They demand suppliers who are willing and able to meet even the most rigorous production requirements, quality standards, and timetables.

Posted in: White Papers, Coatings & Adhesives

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.