Home

Triple Orthogonal Disk Polymer Discrete Space for Cryogenic Feedline Insulation

A new material provides a superior, robust insulation for cryogenic feed lines. John H. Glenn Research Center, Cleveland, Ohio NASA vehicles using cryogenic propellants and systems need improved cryogenic storage and transfer, including insulation for cryogenic transfer/feed lines. Wrapped multi-layer insulation (WMLI) is an innovative, next-generation, high-performance multilayer insulation designed specifically for cryogenic plumbing systems. WMLI uses Quest Thermal Group’s Discrete Spacer Technology to precisely control layer spacing, layer density, and minimize system heat flux. A customized discrete spacer, the Triple Orthogonal Disk (TOD) spacer, was designed, micromolded, and tested, and provides significantly lower heat leak than current state-of-the-art MLI insulation.

Posted in: Briefs, TSP, Materials

Read More >>

Compliant Electrode and Composite Materials for Piezoelectric Wind and Mechanical Energy Conversion

Ames Research Center, Moffett Field, California Thin film, piezoelectric materials generate a small voltage whenever they are deformed, suggesting that they are suitable for tapping energy from freely available resources, such as the wind. Yet their low-energy production levels and lack of electrode durability have hampered development. NASA researchers have invented a system, method, and device for improving the performance and increasing the lifespan of small-form-factor, thin-film electrode, piezoelectric devices capable of interacting with the wind to provide power to wearable devices and stretchable electronics.

Posted in: Briefs, Materials

Read More >>

Development of a Novel, Regenerable Microlith Catalytic Reactor for CO2 Reduction via Bosch Process

Marshall Space Flight Center, Alabama Utilization of CO2 to produce life support consumables, such as water and oxygen, offers a potential advance for NASA’s cabin atmosphere revitalization system and in-situ resources utilization concepts for long-term manned space missions. Toward this goal, the innovators at Precision Combustion, Inc. have investigated the use of catalysts supported on patented short-contact-time Microlith® substrates for CO2 reduction via Bosch process. These catalytic substrates enabled faster reaction rates, higher CO2 conversion, and a reduced recycle penalty. Further improvements in size, volume, and weight are projected by splitting the chemistry of the Bosch process into two separate reactors: a reverse water-gas-shift (RWGS) reactor, and a carbon formation reactor (CFR). Carbon formation would be accomplished via the hydrogenation and/or Boudouard reactions. In this two-stage configuration, the operating conditions can be individually optimized to maximize CO2 conversion as well as the water and carbon production rates. The feasibility study, which included performance testing at various operating conditions, and durability testing were successfully demonstrated.

Posted in: Briefs, Materials

Read More >>

Self-Healing Spacecraft Material Plugs Holes in Seconds

Although shields and sophisticated maneuvers could help protect space structures, scientists have to prepare for the possibility that debris could pierce a vessel. NASA and a team from the University of Michigan developed a new material that heals itself within seconds and could prevent structural penetration from being catastrophic.

Posted in: News, Coatings & Adhesives, Materials

Read More >>

'Snap' Design Mimics Venus Flytrap

A team led by physicist Christian Santangelo at the University of Massachusetts Amherst uses curved creases to give thin shells a fast, programmable snapping motion. The technique – inspired by the natural "snapping systems" like Venus flytrap leaves and hummingbird beaks – avoids the need for complicated materials and fabrication methods when creating structures with fast dynamics.

Posted in: News, Materials, Joining & Assembly, Mechanical Components

Read More >>

Parylene Solves Biocompatibility and Reliability Challenges Facing Designers

Designers and manufacturers over a broad industry spectrum often seek key competitive advantages through the use of conformal coatings to preserve or enhance one or more key properties or functions. These desired functions may be electrical and barrier protection, dry film lubricity, stabilization of delicate microstructures, biocompatibility, antimicrobial features or a combination of one or more of these properties. Advances in technology have driven many part sizes and complexities beyond the capabilities of many traditional conformal coatings.

Posted in: Webinars, On-Demand Webinars, Coatings & Adhesives, Materials

Read More >>

Benefits of Low-Volume Production

Learn how to decrease your time to market as well as reducing risk and cost associated with injection molding. Although low-volume production is typically used at the beginning of the product life cycle, it can also be useful at the end of a products life. In this presentation you will not only learn about plastic injection molding but also liquid silicone rubber, metal and magnesium injection molding. Learn the ins and outs of low volume production and how it can benefit you and your product.

Posted in: Tech Talks, Materials, Plastics

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.