Home

Organic/Inorganic Hybrid Polymer/Clay Nanocomposites

The exfoliation and dispersion of clay particles are improved. A novel class of polymer/clay nanocomposites has been invented in an attempt to develop transparent, lightweight, durable materials for a variety of aerospace applications. As their name suggests, polymer/clay nanocomposites comprise organic/ inorganic hybrid polymer matrices containing platelet- shaped clay particles that have sizes of the order of a few nanometers thick and several hundred nanometers long. Partly because of their high aspect ratios and high surface areas, the clay particles, if properly dispersed in the polymer matrix at a loading level of 1 to 5 weight percent, impart unique combinations of physical and chemical properties that make these nanocomposites attractive for making films and coatings for a variety of industrial applications. Relative to the unmodified polymer, the polymer/clay nanocomposites may exhibit improvements in strength, modulus, and toughness; tear, radiation, and fire resistance; and lower thermal expansion and permeability to gases while retaining a high degree of optical transparency.

Posted in: Briefs

Read More >>

Functionally Graded Nanophase Beryllium/Carbon Composites

The main advantage, relative to Co/WC/diamond composites, is less weight. Beryllium, beryllium alloys, beryllium carbide, and carbon are the ingredients of a class of nanophase Be/Be2C/C composite materials that can be formulated and functionally graded to suit a variety of applications. In a typical case, such a composite consists of a first layer of either pure beryllium or a beryllium alloy, a second layer of B2C, and a third layer of nanophase sintered carbon derived from fullerenes and nanotubes. The three layers are interconnected through interpenetrating spongelike structures.

Posted in: Materials, Briefs, TSP

Read More >>

Thin Thermal-Insulation Blankets for Very High Temperatures

One blanket would have about the thickness of several sheets of paper. Thermal-insulation blankets of a proposed type would be exceptionally thin and would endure temperatures up to 2,100 °C. These blankets were originally intended to protect components of the NASA Solar Probe spacecraft against radiant heating at its planned closest approach to the Sun (a distance of 4 solar radii). These blankets could also be used on Earth to provide thermal protection in special applications (especially in vacuum chambers) for which conventional thermal-insulation blankets would be too thick or would not perform adequately.

Posted in: Materials, Briefs, TSP

Read More >>

Multiaxial Temperature- and Time-Dependent Failure Model

This model should be applicable to a variety of materials. A temperature- and time-dependent mathematical model predicts the conditions for failure of a material subjected to multiaxial stress. The model was initially applied to a filled epoxy below its glass-transition temperature, and is expected to be applicable to other materials, at least below their glass-transition temperatures. The model is justified simply by the fact that it closely approximates the experimentally observed failure behavior of this material: The multiaxiality of the model has been confirmed (see figure) and the model has been shown to be applicable at temperatures from —20 to 115 °F (–29 to 46 °C) and to predict tensile failures of constant-load and constant-load-rate specimens with failure times ranging from minutes to months.

Posted in: Briefs

Read More >>

Environmentally Safer, Less Toxic Fire-Extinguishing Agents

Water droplets would be microencapsulated in flame-retardant polymers. Fire-extinguishing agents comprising microscopic drops of water micro- encapsulated in flame-retardant polymers have been proposed as effective, less toxic, non-ozone- depleting, non-global- warming alternatives to prior fire-extinguishing agents. Among the prior fire-extinguishing agents are halons (various halocarbon fluids), which are toxic and contribute both to depletion of upper- atmospheric ozone and to global warming. Other prior fire-extinguishing agents are less toxic and less environmentally harmful but, in comparison with halons, are significantly less effective in extinguishing fires.

Posted in: Briefs

Read More >>

Switching and Rectification in Carbon-Nanotube Junctions

Research shows promise for nanoscale electronic devices. Figure 1. Symmetric and Asymmetric Carbon-Nanotube Multiterminal carbon-nanotube junctions are under investigation as candidate components of nanoscale electronic devices and circuits. Three-terminal "Y" junctions of carbon nanotubes (see Figure 1) have proven to be especially interesting because (1) it is now possible to synthesize them in high yield in a controlled manner and (2) results of preliminary experimental and theoretical studies suggest that such junctions could exhibit switching and rectification properties.

Posted in: Briefs, TSP

Read More >>

Scandia-and-Yttria-Stabilized Zirconia for Thermal Barriers

These compositions offer thermal stability greater than that of yttria-stabilized zirconia. Zirconia stabilized with both scandia and yttria in suitable proportions has shown promise of being a superior thermal-barrier coating (TBC) material, relative to zirconia stabilized with yttria only. More specifically, a range of compositions in the zirconia/scandia/yttria material system has been found to afford increased resistance to deleterious phase transformations at temperatures high enough to cause deterioration of yttria- stabilized zirconia.

Posted in: Briefs, TSP

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.