Home

Achieve Better Process Controls with Light Cure Technology

In manufacturing, process controls are used to ensure that products are made to the highest standard possible. When effective procedures are laid out for each step in the manufacturing process, it's much easier to reduce the risk of damage, failure, and loss. Employees are able to understand what to do, when to do it, and how to do it well. Good process controls help a company turn out the best version of its product and have fewer headaches along the way. But some technologies lend themselves to smoother processes than others. Light-curable materials in the manufacturing process actually allow for better process controls than other adhesive options. This white paper shows the benefits of using them, and what those process controls look like.

Posted in: White Papers

Read More >>

Zinc Oxide Materials Power Tiny Energy Harvesting Devices

Many types of smart devices are readily available and convenient to use. The goal now is to make wearable electronics that are flexible, sustainable, and powered by ambient renewable energy. This last goal inspired researchers to explore how the attractive physical features of zinc oxide (ZnO) materials could be used to tap into abundant mechanical energy sources to power micro devices. They discovered that inserting aluminum nitride insulating layers into ZnO-based energy harvesting devices led to a significant improvement of the devices’ performance. The group’s findings are expected to provide an effective approach for realizing “nanogenerators” for self-powered electronic systems such as portable communication devices, healthcare monitoring devices, environmental monitoring devices, and implantable medical devices. Source:

Posted in: News, Electronic Components, Energy Harvesting, Renewable Energy, Metals

Read More >>

Glass as Electrode Makes Batteries More Efficient

Today’s batteries provide a reliable power supply for our smartphones, electric cars and laptops, but are unable to keep up with the growing demands placed on them. Researchers have discovered a material that may have the potential to double battery capacity: vanadate-borate glass. The glass is being used as a cathode material, which is made of vanadium oxide (V2O5) and lithium-borate (LiBO2) precursors, and was coated with reduced graphite oxide (RGO) to enhance the electrode properties of the material. The vanadate-borate glass powder was used for battery cathodes, which were placed in prototypes for coin cell batteries to undergo numerous charge/discharge cycles. In tests, the glass electrodes demonstrated a vast improvement in these batteries’ capacity and energy density. Source:

Posted in: News, Batteries, Electronic Components, Energy Efficiency

Read More >>

Photo-Chemical Machining (PCM) of metals…faster & more cost effective than you’d think!

Photo-Chemical Machining (PCM) or photo-etching of metals is a mature process used to create very accurate metal components. This process emerged in the 1960s as an offshoot of the printed circuit board industry. PCM can produce highly complex parts with very fine details, quickly, accurately and economically. Photo etching is a cost effective alternative to stamping, punching, laser cutting, water jet cutting, or electrical discharge machining (EDM) of thin gauge precision parts.

Posted in: Webinars, On-Demand Webinars, Metals

Read More >>

Microcapsule Method Captures Carbon

Researchers has developed a novel class of materials that enable a safer, cheaper, and more energy-efficient process for removing greenhouse gas from power-plant emissions. The team, led by scientists from Harvard University and Lawrence Livermore National Laboratory, employed a microfluidic assembly technique to produce microcapsules that contain liquid sorbents, or absorbing materials, encased in highly permeable polymer shells. The capsules have significant performance advantages over the carbon-absorbing materials used in current capture and sequestration technology.The new technique employs an abundant and environmentally benign sorbent: sodium carbonate, which is kitchen-grade baking soda. The microencapsulated carbon sorbents (MECS) achieve an order-of-magnitude increase in CO2 absorption rates compared to sorbents currently used in carbon capture. The carbon sorbents are produced using a double-capillary device in which the flow rates of three fluids — a carbonate solution combined with a catalyst for enhanced CO2 absorption, a photo-curable silicone that forms the capsule shell, and an aqueous solution — can be independently controlled.The MECS-based approach could also be tailored to industrial processes like steel and cement production, which are significant greenhouse gas sources.SourceRead other Materials tech briefs.

Posted in: News, Greenhouse Gases, Remediation Technologies

Read More >>

Modeling Transmission Effects on Multilayer Insulation

New mathematical modeling of multilayer insulation performance extends over a much wider range of performance criteria than other known models. John F. Kennedy Space Center, Florida Recent experimental results within the NASA community have shown apparent degradation in the performance of multilayer insulation (MLI) when used in low-temperature applications, e.g., in liquid hydrogen tanks. There was speculation that this degradation was due to the appearance of radiative transmission of energy at these low temperatures since the black-body emission curve at low temperatures corresponds to long wavelengths that might be able to partially pass through the MLI sheets. The standard models for MLI could not be extended to include transmission effects, so a new mathematical system was developed that generalizes the description of the performance of this insulation material.

Posted in: Briefs, TSP, Coatings & Adhesives

Read More >>

Woven Thermal Protection System

Ames Research Center, Moffett Field, California Woven thermal protection system (WTPS) is a new approach to producing TPS materials that uses precisely engineered 3D weaving techniques to customize material characteristics needed to meet specific missions requirements for protecting space vehicles from the intense heating generated during atmospheric entry. Using WTPS, sustainable, scalable, mission-optimized TPS solutions can be achieved with relatively low lifecycle costs compared with the high costs and long development schedules currently associated with material development and certification. WTPS leverages the mature weaving technology that has evolved from the textile industry to design TPS materials with tailorable performance by varying material composition and properties via the controlled placement of fibers within a woven structure. The resulting material can be designed to perform optimally for a wide range of entry conditions.

Posted in: Briefs

Read More >>