Application of Carbon Nanotube Hold-Off Voltage for Determining Gas Composition

Ames Research Center, Moffett Field, California In this innovation, a method and associated system have been created to vary a voltage applied to an exposed end of a carbon nanotube for a selected time interval to promote gas discharge, and to estimate a gas component involved in the discharge. Each component of a gas has a first, lower threshold discharge (voltage value, V∞) at which discharge can occur after a long time delay (t(V∞:ho)≈∞), where “ho” refers to a discharge voltage holdoff value. Application of a voltage V above this lower limit V∞ will cause the gas component to undergo a discharge after a discharge holdoff time t(V:ho) that decreases as V increases above V∞.

Posted in: Briefs, Materials


Electropolishing for Hydraulics and Pneumatics

Manufacturing components for the hydraulic and pneumatic industries often involve creating the ideal surface finish: neither too rough nor too smooth. When it comes to surface finish, electropolishing can help manufacturers walk that fine line and achieve the ultimate in function.

Posted in: White Papers, Electronics, Electronics & Computers, Manufacturing & Prototyping, Coatings & Adhesives, Materials


The Truth about Parylene Coating & Medical Devices

Parylene is the generic name for members of a unique polymer series. Parylene conformal coatings represent a distinct family of organic polymeric coating materials that are polycrystalline and linear in nature, with innumerable commercial applications. Resilient, dielectric, and pinhole-free, parylenes are frequently selected for use with products subjected to ongoing conditions of duress that might otherwise diminish their performance.

Posted in: White Papers, White Papers, Coatings & Adhesives, Materials, Medical


Design to Manufacturing: Complete Support for High-Precision Components

The medical device, aerospace, and automotive industries are fast-moving, complex, and highly competitive. They demand suppliers who are willing and able to meet even the most rigorous production requirements, quality standards, and timetables.

Posted in: White Papers, Manufacturing & Prototyping, Coatings & Adhesives, Materials


Solving the Challenges of Grounding and Bonding Composite Airframes

Weight-saving composite airframes create new challenges in providing reliable grounding and bonding systems.

Posted in: On-Demand Webinars, On-Demand Webinars, Composites, Materials


Case Studies with Poly(p-xylylene) Polymers – Parylene Coated Elastomers

In this Webinar we will focus most of our attention on parylene coating of elastomers. You will see commercially viable solutions that enhance lubricity and ruggedize elastomeric components operating in challenging environments.

Posted in: On-Demand Webinars, Webinars, On-Demand Webinars, Coatings & Adhesives, Materials


Regenerable Trace-Contaminant Sorbent for the Primary Life Support System (PLSS)

This technology has applications in air-revitalization systems on spacecraft, submarines, automobiles, and commercial aircraft. Lyndon B. Johnson Space Center, Houston, Texas The NASA objective of expanding the human experience into the far reaches of space requires the development of regenerable life support systems. This work addresses the development of a regenerable air-revitalization system for trace-contaminant (TC) removal for the spacesuit used in extravehicular activities (EVAs). Currently, a bed of granular activated carbon is used for TC control. The carbon is impregnated with phosphoric acid to enhance ammonia sorption, but this also makes regeneration difficult, if not impossible. Temperatures as high as 200 °C have been shown to be required for only partial desorption of ammonia on time scales of 18,140 hours. Neither these elevated temperatures nor the long time needed for sorbent regeneration are acceptable. Thus, the activated carbon has been treated as an expendable resource, and the sorbent bed has been oversized in order to last throughout the entire mission.

Posted in: Briefs, TSP, Materials


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.