Crawling Robot is Powered by Moisture

Researchers used flash-treated graphene oxide to create a crawler that moved when humidity was increased. Switching the humidity off and on several times induced the crawler to move 3.5 millimeters in 12 seconds, with no external energy supply. (Credit: Jilin University)

Using an off-the-shelf camera flash, researchers at Jilin University, China, turned an ordinary sheet of graphene oxide into a material that bends when exposed to moisture. They then used this material to make a spider-like crawler and claw robot that move in response to changing humidity, without the need for any external power.

Posted in: News, Materials, Motion Control, Robotics
Read More >>

Improving Corrosion Resistance of 303 Stainless Steel

Able Electropolishing, a leader in the electropolishing industry, teamed up with Swiss Precision Machining Inc., to test the effectiveness of passivation vs. electropolishing on corrosion resistance of machined 303 stainless steel components.

Posted in: White Papers, Green Design & Manufacturing, Manufacturing & Prototyping, Coatings & Adhesives, Materials
Read More >>

ABLE TECHNICAL GUIDE: Your Solution to 7 Metal Surface Problems

Electropolishing is often referred to as a “reverse plating” process. Electrochemical in nature, electropolishing uses a combination of rectified current and a blended chemical electrolyte bath to remove flaws from the surface of a metal part.

Posted in: White Papers, Manufacturing & Prototyping, Coatings & Adhesives, Materials, Test & Measurement
Read More >>

Adam Sidor, NASA Research Fellow, Georgia Institute of Technology, Atlanta, GA

Thermal Protection Systems (TPS) — heatshields — form the outer surface of spacecraft and provide protection as the vehicle plunges through planetary atmospheres. Conformal ablative materials are currently being developed to improve TPS performance. Adam Sidor is developing a fresh approach to designing and manufacturing these materials to produce larger tile sizes while reducing labor, cost, and waste.

Posted in: Who's Who, Materials
Read More >>

The Innovative Future of Brazing

Join Morgan Advanced Materials for a 30-minute Webinar to learn more about new innovations in brazing technology.

Posted in: Upcoming Webinars, Materials
Read More >>

Combination Structural Support and Thermal Protection System

Applications include engine firewalls in general aviation aircraft, turbine engines, automobiles, or other ground vehicles; and in building construction for fire protection.

NASA's Langley Research Center has developed a system that provides both structural support and protection attributes in a failsafe manner. This innovation incorporates the use of a pre-ceramic polymer (PCP) composite structure that when overheated or exposed to fire or plasma will convert to a ceramic matrix composite (CMC), retaining structural integrity and still functioning effectively. When damage causes the thermal protection system (TPS) to fail, the underlying PCP structure converts to a CMC material that has high-temperature structural properties, will not catch fire or melt, and continues to perform its structural function.

Posted in: Briefs, Materials
Read More >>

Composite Insulated Conductor

These extreme fire-resistant insulation systems show promise for use in high-voltage, high-power systems.

NASA's Langley Research Center has developed a new class of polyimide composite electrical insulation materials for wires, cable, and bus pipe. These new insulation materials have been shown to withstand a 12-hour gas flame test while maintaining structural and electrical circuit integrities. These extreme fire-resistant insulation systems show promise for use in high-voltage, high-power systems. They can improve survivability and continuity of the electrical power supply. Besides fire resistance, these materials also provide weight and space savings because of their lightweight nature and exceptionally high-performance capability. NASA developed the wire insulation for exploration and space operations; however, the technology also has applicability to other high-voltage, high-power systems for maritime, high-rise building construction, and other industries.

Posted in: Briefs, Materials
Read More >>

Multifunctional Platelet Composites for Tin Whisker Mitigation

Applications include consumer electronics, automotive, and electronic weapons systems.

To comply with the Restriction of Hazardous Substances (RoHS) directive, pure tin is replacing lead-tin alloys in commercial electronic devices. Unfortunately, tin can grow whiskers that can lead to electrical short circuits or metal vapor arcing, both of which threaten the long-term reliability of electronic systems, and cause critical systems to fail catastrophically. A current method of whisker mitigation utilizes coatings based on glassy or rubbery unfilled polymers; such coatings are not impenetrable to tin whiskers.

Posted in: Briefs, Materials
Read More >>

Electrically Conductive, Optically Transparent Polymer/Carbon Nanotube Composites

A templated growth process provides uniform-sized carbon nanotubes.

NASA's Langley Research Center researchers have developed a novel method for making carbon nanotubes that are very uniform in size. A template is used to guide the carbon nanotube growth so that all nanotubes are uniform in size. The carbon nanotubes can be used as-grown, uniformly dispersed, and aligned within the template or isolated from the template for use as carbon nanotubes. The solution-based process uses sugar as a carbon source, does not require vacuum, and is thus simple and low-cost in nature.

Posted in: Briefs, Materials
Read More >>

Space Vehicle Heat Shield Having Edgewise Strips of Ablative Material

Edgewise strips of PICA ablator eliminate gaps in the capsule heat shield.

An alternate heat shield concept for the Orion space vehicle is to use interlocking blocks of Phenolic Impregnated Carbon Ablator (PICA). The blocks are independent from one another and there is a defined gap inches between the blocks. That gap poses serious problems to the vehicle and crew if gases flow between the PICA blocks. This invention is a simple yet robust invention for PICA block gap filler. Strips of preconditioned PICA blocks are positioned edgewise to fill gaps between PICA blocks to provide a gap filler substance that allows thermal expansion, and satisfies mechanical strain between the PICA tiles and substructure.

Posted in: Briefs, Materials
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.