Home

Sensor Uses Radio Waves to Detect Subtle Pressure Changes

Stanford engineers have invented a wireless pressure sensor that has already been used to measure brain pressure in lab mice with brain injuries. The underlying technology has such broad potential that it could one day be used to create skin-like materials that can sense pressure, leading to prosthetic devices with the electronic equivalent of a sense of touch. In one simple demonstration they used this wireless pressure sensor to read a team member’s pulse without touching him.

Posted in: Materials, Metals, Plastics, Sensors, Detectors, RF & Microwave Electronics, Antennas, News

Read More >>

New Coating Cools Buildings, Beams Away Heat

Stanford engineers have invented a revolutionary coating material that can help cool buildings, even on sunny days, by radiating heat away from the buildings and sending it directly into space.

Posted in: Green Design & Manufacturing, Materials, Coatings & Adhesives, Energy Efficiency, Energy, News

Read More >>

New Compounds Developed to Manufacture Tunable OLED Devices

Researchers have developed new organic compounds characterized by higher modularity, stability, and efficiency that could be applicable for use in electronics or lighting. A proof-of-concept project has begun to verify that the compounds have the photoluminescence and electrochemical properties required for the manufacture of tunable organic LEDs (OLEDs) that can emit in the blue portion of the visible spectrum, thus applying lower voltages and achieving greater efficiency and longer life.

Posted in: Electronics & Computers, Manufacturing & Prototyping, Materials, Energy Efficiency, Energy, Lighting, OLEDs, News

Read More >>

NASA's Hot 100 Technologies: Materials & Coatings

Shape Memory Alloys Shape Memory Alloys (SMAs) can be deformed at low temperature and recover their original shape upon heating. New alloys can operate up to ~300 °C, compared to ~80 °C for commercially available alloys. SMAs can be used in adaptive structures, actuators, heat detection devices, medical devices, high-temperature automotive components, aeronautics, and military.

Posted in: Materials, Coatings & Adhesives, Techs for License, Articles

Read More >>

Researchers Measure Stress in 3D-Printed Metal Parts

Lawrence Livermore National Laboratory researchers have developed an efficient method to measure residual stress in metal parts produced by powder-bed fusion additive manufacturing (AM).The 3D-printing process produces metal parts layer by layer using a high-energy laser beam to fuse metal powder particles. When each layer is complete, the build platform moves downward by the thickness of one layer, and a new powder layer is spread on the previous layer.While the method produces quality parts and components, residual stress is a major problem during the fabrication process. Large temperature changes near the last melt spot, and the repetition of this process, result in localized expansion and contraction.An LLNL research team, led by engineer Amanda Wu, has developed an accurate residual stress measurement method that combines traditional stress-relieving methods (destructive analysis) with modern technology: digital image correlation (DIC). The process provides fast and accurate measurements of surface-level residual stresses in AM parts.The team used DIC to produce a set of quantified residual stress data for AM, exploring laser parameters. DIC is a cost-effective, image analysis method in which a dual camera setup is used to photograph an AM part once before it’s removed from the build plate for analysis and once after. The part is imaged, removed, and then re-imaged to measure the external residual stress.SourceAlso: Learn about Design and Analysis of Metal-to-Composite Nozzle Extension Joints.

Posted in: Cameras, Imaging, Photonics, Lasers & Laser Systems, Manufacturing & Prototyping, Rapid Prototyping & Tooling, Materials, Metals, Test & Measurement, Measuring Instruments, News

Read More >>

Microbot Muscles Self-Assemble and Flex

In a step toward robots smaller than a grain of sand, University of Michigan researchers have shown how chains of self-assembling particles could serve as electrically activated muscles in the tiny machines."We are inspired by ideas of microscopic robots," said Michael Solomon, a professor of chemical engineering. "They could work together and go places that have never been possible before."Solomon and his group demonstrated that some gold plating and an alternating electric field can help oblong particles form chains that extend by roughly 36 percent when the electric field is on.The team started with particles similar to those found in paint, with diameters of about a hundredth the width of a strand of hair. They stretched these particles into football shapes and coated one side of each football with gold. The gilded halves attracted one another in slightly salty water—ideally about half the salt concentration in the sports drink Powerade. The more salt in the water, the stronger the attraction.Left to their own devices, the particles formed short chains of overlapping pairs, averaging around 50 or 60 particles to a chain. When exposed to an alternating electric field, the chains seemed to add new particles indefinitely. But the real excitement was in the way that the chains stretched."We want them to work like little muscles," said Sharon Glotzer, the Stuart W. Churchill Professor of Chemical Engineering. "You could imagine many of these fibers lining up with the field and producing locomotion by expanding and contracting."SourceAlso: Learn about Microelectronic Repair Techniques for Wafer-Level Integration.

Posted in: Electronics & Computers, Materials, Machinery & Automation, Robotics, News

Read More >>

Light Bending Material Facilitates Search for New Particles

Particle physicists have a hard time identifying all the elementary particles created in their particle accelerators. But now researchers at Chalmers University of Technology have designed a material that makes it much easier to distinguish the particles.

Posted in: Photonics, Optics, Materials, Solar Power, Energy, News

Read More >>