Home

Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

Applications for the strong, flexible material include thermal insulation and lightweight sandwich structures. John H. Glenn Research Center, Cleveland, Ohio NASA-developed polyimide aerogels are 500 times stronger than conventional silica aerogels. The innovative aerogels represent a revolutionary advance over fragile silica aerogels because they are highly flexible and foldable in thin film form. As a thin film, they can be used to insulate industrial pipelines, automotive shields, and temporary housing structures, and can be used within protective clothing such as firefighting jackets, space suits, and parkas. As a thicker part, they can be easily molded to a shape, or sanded and machined to provide insulation as well as mechanical support. No other aerogel possesses the compressive and tensile strength of the NASA innovation while still retaining its ability to be flexibly folded to contour to whatever shape is needed.

Posted in: Briefs, Materials

Read More >>

Catalytic Oxidation of Organic Contaminants at Reduced Pressure

Marshall Space Flight Center, Alabama The current technology for catalytic oxidation of aqueous organic contaminants at elevated temperature and pressure works well at operating conditions of 265 °F and 70 psia with effluent TOCs (total organic carbon) of less than 0.5 ppm. However, it does not perform well at the reduced temperature, i.e., sub-water-boiling temperature (200 °F), and the reduced pressure such as ambient pressure (14.7 psia) as indicated by the effluent TOCs approximately the same as feed TOC.

Posted in: Briefs, Materials

Read More >>

Approach for Achieving Flame Retardancy While Retaining Physical Properties in a Compatible Polymer Matrix

John F. Kennedy Space Center, Florida NASA’s Kennedy Space Center (KSC) seeks to license its Advanced Fire Retardant Materials to industry. KSC’s scientists have developed processes and know-how to impart fire retardancy to common polymers such as nylons, polyesters, and acrylics. NASA developed this technology for use in personnel protective systems for launch pad personnel engaged in hazardous materials (HAZMAT) operations. The invention provides polymer blends containing polyhydroxyamide and one or more flammable polymers. The polymer blends are flame-retardant and have improved durability and heat stability compared to the flammable polymer portion of the blends.

Posted in: Briefs, Materials

Read More >>

Metal/Fiber Laminate and Fabrication Using a Porous Metal/Fiber Preform

This technology can be used in aeronautics, pressure vessels and storage tanks, ballistic protection, automotive structures, and composite doors and windows. Langley Research Center, Hampton, Virginia NASA’s Langley Research Center has developed a new technique to enable the preparation of metal/composite hybrid laminates, also known as fiber metal laminates (FML), by depositing metal directly onto fabric using a plasma deposition process. FMLs provide a useful combination of structural and functional properties for both aerospace and non-aerospace applications. Currently, FMLs are prepared in a compression process utilizing a press or autoclave with metallic layers (foils) sandwiched between layers of glass or graphite prepreg (preimpregnated fibers with a matrix resin). The NASA process deposits the metal on the fiber via plasma deposition. The porosity of the coated fabric allows for resin infusion.

Posted in: Briefs, Materials

Read More >>

Researchers Develop Self-Healing, Shape-Changing Smart Material

Washington State University researchers have created a multi-functional smart material that changes shape when subjected to heat or light; the material then assembles and disassembles itself.

Posted in: News, Materials

Read More >>

Method for Exfoliation of Hexagonal Boron Nitride

Langley Research Center, Hampton, Virginia NASA’s Langley Research Center has developed a method for exfoliating commercially available hexagonal Boron Nitride (hBN) into nanosheets a few atomic layers thick. Currently, hBN has limited use because it is insoluble with limited dispersibility, despite hBN having excellent thermal conductivity and electrical insulation. Langley’s novel method provides for exfoliated hBN nanosheets that are soluble or suspendable in a variety of solvents, allowing for their bulk preparation and incorporation into composites, coatings, and films.

Posted in: Briefs, Materials

Read More >>

Sucrose-Treated Carbon Nanotube and Graphene Yarns and Sheets

Applications include structural materials for aerospace vehicles, space habitats, and lightweight but mechanically robust consumer devices. Langley Research Center, Hampton, Virginia NASA’s Langley Research Center has developed a method to consolidate carbon nanotube yarns and woven sheets and graphene sheets via the dehydration of sucrose. The resulting materials are lightweight and high strength. Sucrose is relatively inexpensive and readily available; therefore the process is cost-effective.

Posted in: Briefs, Materials

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.