Home

Researchers Create See-Through Solar Concentrator

A team of researchers at Michigan State University has developed a new type of solar concentrator that when placed over a window creates solar energy.The device is called a transparent luminescent solar concentrator and can be used on buildings, cell phones, and any other device that has a clear surface.And, according to Richard Lunt of MSU’s College of Engineering, the key word is “transparent.”The solar harvesting system uses small organic molecules developed by Lunt and his team to absorb specific nonvisible wavelengths of sunlight.The “glowing” infrared light is guided to the edge of the plastic where it is converted to electricity by thin strips of photovoltaic solar cells.“Because the materials do not absorb or emit light in the visible spectrum, they look exceptionally transparent to the human eye,” said Richard Lunt of MSU’s College of Engineering.SourceAlso: Learn about High-Efficiency Nested Hall Thrusters for Robotic Solar System Exploration.

Posted in: Materials, Plastics, Solar Power, Renewable Energy, Energy, Semiconductors & ICs, News

Read More >>

Water Splitter Runs on AAA Battery

Scientists at Stanford University have developed a low-cost, emissions-free device that uses an ordinary AAA battery to produce hydrogen by water electrolysis.  The battery sends an electric current through two electrodes that split liquid water into hydrogen and oxygen gas. Unlike other water splitters that use precious-metal catalysts, the electrodes in the Stanford device are made of inexpensive and abundant nickel and iron.In addition to producing hydrogen, the novel water splitter could be used to make chlorine gas and sodium hydroxide, an important industrial chemical. Splitting water to make hydrogen requires no fossil fuels and emits no greenhouse gases. But scientists have yet to develop an affordable, active water splitter with catalysts capable of working at industrial scales."It's been a constant pursuit for decades to make low-cost electrocatalysts with high activity and long durability," said Stanford University Professor Hongjie Dai. "When we found out that a nickel-based catalyst is as effective as platinum, it came as a complete surprise."SourceAlso: Learn about a Proton Exchange Membrane Fuel Cell.

Posted in: Batteries, Electronics & Computers, Power Management, Alternative Fuels, Green Design & Manufacturing, Materials, Metals, Energy, News

Read More >>

Researchers Create Energy-Absorbing Material

Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations.A team of engineers and scientists at Lawrence Livermore National Laboratory (LLNL) has found a way to design and fabricate, at the microscale, new cushioning materials with a broad range of programmable properties and behaviors that exceed the limitations of the material's composition, through additive manufacturing, also known as 3D printing. Livermore researchers, led by engineer Eric Duoss and scientist Tom Wilson, focused on creating a micro-architected cushion using a silicone-based ink that cures to form a rubber-like material after printing. During the printing process, the ink is deposited as a series of horizontally aligned filaments (which can be fine as a human hair) in a single layer. The second layer of filaments is then placed in the vertical direction. This process repeats itself until the desired height and pore structure is reached.The researchers envision using their novel energy-absorbing materials in many applications, including shoe and helmet inserts, protective materials for sensitive instrumentation, and in aerospace applications to combat the effects of temperature fluctuations and vibration.SourceAlso: Read more Materials tech briefs.

Posted in: Manufacturing & Prototyping, Rapid Prototyping & Tooling, Materials, Aerospace, Defense, News

Read More >>

NASA 3D Printing Technique Creates Metal Spacecraft Parts

Researchers at NASA's Jet Propulsion Laboratory are implementing a printing process that transitions from one metal or alloy to another in a single object. JPL scientists have been developing a technique to address this problem since 2010. An effort to improve the methods of combining parts made of different materials in NASA's Mars Science Laboratory mission inspired a project to 3D print components with multiple alloy compositions.

Posted in: Manufacturing & Prototyping, Rapid Prototyping & Tooling, Materials, Metals, Aerospace, News

Read More >>

Secret of Eumelanin’s Ability to Absorb Broad Spectrum of Light Uncovered

Melanin — and specifically, the form called eumelanin — is the primary pigment that gives humans the coloring of their skin, hair, and eyes. It protects the body from the hazards of ultraviolet and other radiation that can damage cells and lead to skin cancer. But the exact reason why the compound is so effective at blocking such a broad spectrum of sunlight has remained something of a mystery. Now, however, researchers at MIT and other institutions have solved that mystery, potentially opening the way for the development of synthetic materials that could have similar light-blocking properties.

Posted in: Electronics & Computers, Photonics, Optics, Materials, Composites, Medical, Solar Power, Energy, News

Read More >>

Engineers Hope to Create Electronics That Stretch at the Molecular Level

Nanoengineers at the University of California, San Diego are asking what might be possible if semiconductor materials were flexible and stretchable without sacrificing electronic function?

Posted in: Electronics & Computers, Electronic Components, Board-Level Electronics, Electronics, Materials, Sensors, Semiconductors & ICs, News

Read More >>

High-Efficiency, Easy-to-Manufacture Engineered Nanomaterials for Thermoelectric Applications

Materials can be produced in thin/thick film form while maintaining film quality and stoichiometric balance. Marshall Space Flight Center, Alabama Stated generally, reducing the dimensionality of bulk-scale thermoelectric (TE) materials is theoretically and practically understood to be a viable route for maintaining/increasing phonon scattering, and maintaining/increasing electrical conductivity — necessary conditions for improving thermoelectric merit. Solution deposition of thin, anisotropic films of nanoscale particles of known TE materials is a route toward obtaining such low-dimensional materials with increased TE merit.

Posted in: Materials, Briefs

Read More >>