Nasa Tech Briefs

Processing and Manufacture of Inorganic-Organic Hybrid Syntactic Structural Cryogenic Insulator

John H. Glenn Research Center, Cleveland, Ohio Reducing the cost and weight of launch structures is essential to meeting NASA goals for reliable access to space. Currently, separate systems are used for structure and pressure containment, cryogenic insulation, and high-temperature insulation. One way of reducing this cost and weight is through the development of multifunctional materials that can eliminate parasitic weight. Combining two functional components — structure and insulation — reduces weight and structural complexity, which usually is akin to fragility in the system, and minimizes the need for parasitic thermal protection and insulation systems.

Posted in: Briefs, Materials, Composite materials, Insulation, Launch vehicles, Lightweighting


Multifunctional Ablative Thermal Protection System

This material has applications in aerospace systems, manufacturing, and structural components requiring three-dimensional reinforcement. Ames Research Center, Moffett Field, California The Orion crew module highlighting the compression pads in the heat shield. NASA has developed a unique and robust multifunctional material called 3-Dimensional Multifunctional Ablative (3DMAT) Thermal Protection System (TPS) that meets both the structural and thermal performance needs for a lunar return mission and beyond. 3DMAT uses a game-changing woven technology tailored to the needs of the Orion Multi-Purpose Crew Vehicle (MPCV) compression pad. Compression pads serve as the interface between the crew module and service module of the Orion MPCV. The compression pads must carry the structural loads generated during launch, space operations, and pyroshock separation of the two modules. They must also serve as an ablative TPS withstanding the high heating of Earth re-entry. 3DMAT leverages NASA’s investment in woven TPS to design, manufacture, test, and demonstrate a prototype material for the Orion compression pads that combines the weaving of quartz yarns with resin transfer molding.

Posted in: Briefs, Materials, Thermal management, Fibers, Resins, Entry, descent, and landing, Launch vehicles


Hierarchical Support for Nanocatalysts

Lyndon B. Johnson Space Center, Houston, Texas This work focused on enhancing catalyst activity and durability by developing a method to control size, dispersion, and exposure. Existing nanocatalysts are typically fabricated in bulk or powder form. There are monolithic catalysts, but they rely on meso-porous materials as supports. Bulk nanocatalysts suffer from a lack of complete exposure to reagents, counteracting the benefits of the nanoparticles. Catalysts upon meso-porous support have limited exposure due to diffusion distances through the porous support. This requires higher catalyst loading, and may lead to particle coalescence and deactivation.

Posted in: Briefs, Materials, Catalysts, Nanomaterials


Control of Carbon Nanotube Density and Tower Height in an Array

Applications include high-density semiconductor chips, and heat dissipation and thermal conduction in personal computers, smartphones, and televisions. Ames Research Center, Moffett Field, California Use of arrays of carbon nanotubes (CNTs) as an intermediary for transport of electrical particles (e.g., electrons) and/or transport of thermal energy from one body to another has grown. For example, a CNT array may be used for dissipation of thermal energy or accumulated electrical charge associated with operation of an electronics device or system. However, the device or system may require use of different CNT array densities in various regions because of differing transport requirements.

Posted in: Briefs, Materials, Electronic equipment, Nanotechnology, Semiconductors


In-Situ Chemical Analysis of Material Surfaces

Composition by freezing uses laser ablation and laser ionization mass spectrometry for detection of chemical, pharmaceutical, biotech, and hazardous materials. NASA’s Jet Propulsion Laboratory, Pasadena, California In order to understand whether the ablation laser would cause chemical reactions within the trapped organic molecules during resonant laser ablation of water ice containing organic molecules, a two-layer approach was devised. The first layer consisted of D2O ice containing organics that are inactive for the laser wavelength used (2.94 microns), and shown not to ablate under these conditions. When an additional layer of H2O ice was deposited on top of the D2O layer, both H2O and D2O layers, and the organics embedded in the D2O layer, became ablated due to resonant excitation of the H2O ice layer that transferred energy to the D2O layer. This showed that the organic matter is not damaged.

Posted in: Briefs, Materials, Lasers, Water, Chemicals, Hazardous materials, Test equipment and instrumentation, Test procedures


Flexible, High-Temperature Polyimide/Urea Aerogels

Cross-linked polyimide/urea aerogels are potential candidates for insulation for clothing, wrap-around items such as hoses, and refrigeration units.Cross-linked silica-based aerogels with polymeric materials, as well as incorporating a flexible linkage into the underlying metal oxide, have been proven to improve strength and resilience over their native, or non-cross-linked, counterparts without adversely affecting porosity and density. In this invention, high-temperature, stable, all-organic polyimide aerogels are prepared as reacting linear polyimide chains with a functional monomer to create branchings that are further room-temperature-cured with multifunctional isocyanate to form a three-dimensional network.

Posted in: Briefs, Materials, Heat resistant materials, Materials properties, Polymers


Multilayer Insulation Systems

Applications exist where cryogenic fluids or liquefied gases are required, and in magnetic resonance imaging (MRI), power transmission in big cities, food freezing, and blood banks.Cryogenic fluid management (CFM) is a critical technical area that is needed for the successful development of future space exploration. A key challenge is the storability of LH2, LCH4, and LOX propellants for long durations. The storage tanks must be well insulated to prevent over-pressurization and venting, which lead to unacceptable propellant losses for long-duration missions to Mars and beyond.

Posted in: Briefs, Materials, Liquid propellants, Spacecraft fuel, Thermal management, Storage, Insulation


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.