Home

Insulative Carbon Fiber Systems for Aerospace Applications

New insulative carbon-fiber composite systems have been developed for use in structural and thermal applications for the aerospace vehicle interface. The sandwich-type composite structure, including carbon fiber and aerogel blanket materials, is based on the previously disclosed family of hybrid laminate composites. Offering unique and tailorable combinations of structural and thermal properties, these insulative carbon fiber systems can be used in vehicle shroud and thermal protection system applications at the aerodynamic interface plane, panels between stages, or fairings for spacecraft equipment space of space launch vehicles. The novel, lightweight, fiber composite laminate system with reduced heat transfer also has increased impact resistance at low temperatures.

Posted in: Briefs, Materials

Read More >>

In-Situ Formation of Reinforcement Phases in Ultra-High- Temperature Ceramic Composites

This technology could be used in re-entry vehicles, reusable launch vehicles, hypersonic vehicle leading edges, and commercial spacecraft.Future-generation materials for use on space transportation vehicles require substantial improvements in material properties leading to increased reliability and safety, as well as intelligent design to allow for current materials to meet future needs. Ultra-high-temperature ceramics (UHTC), composed primarily of metal diborides, are candidate materials for sharp leading edges on hypersonic re-entry vehicles. NASA has demonstrated that it is possible to form high-aspect-ratio reinforcement phases in-situ during the processing step for both ceramic composites and UHTCs. Initial characterization of these systems has demonstrated that crack deflection along the matrix-reinforcement interface is observed yielding a system of improved toughness over the baseline system, leading to improved mechanical performance. The reinforced composites should therefore reduce the risk of catastrophic failure over current UHTC systems.

Posted in: Briefs, Coatings & Adhesives, Materials

Read More >>

Multi-Phase Ceramic System

Bearing surfaces are typically either metal-on-metal (MOM), ceramic-on-ceramic (COC), or metal-on-polyethylene (MOP). MOM and MOP couplings have the drawback that metallic or polyethylene particles can sometimes separate from the couplings, which can cause significant problems, particularly in a hip or joint replacement. COC couplings are less likely to lose particles due to wear, which makes them more biocompatible, but they are more susceptible to fracture. COC couplings also have a tendency to squeak as they move. Innovators at NASA’s Glenn Research Center have developed a technique using rare earth elements to fabricate a dual-phase ceramic composite that combines a wear-resistant phase and a solid-state lubricant phase. The result is a coupling material that, compared to currently used materials, exhibits a tenfold reduction in the friction coefficient, a sixfold reduction in wear, and a significant reduction in debris caused by wear. Glenn’s groundbreaking rare-earth aluminate composite has considerable potential, not only in biomedical applications, but also in commercial and industrial sectors.

Posted in: Briefs, Ceramics, Materials

Read More >>

Minimally Machined HoneySiC Panels and T300 HoneySiC

The materials are intended for low areal density and near-zero CTE optomechanical structures.The primary purpose of this work is to develop and demonstrate technologies to manufacture ultra-low-cost precision optical systems for very large x-ray, UV/optical, or infrared telescopes.

Posted in: Briefs, Coatings & Adhesives, Materials

Read More >>

Flexible Volumetric Structure

These composite elastic skins can be tailored for specific applications.NASA’s Langley Research Center has developed composite elastic skins for covering shape-changing (morphable) structures. These skins are intended especially for use on advanced aircraft that change shapes in order to assume different aerodynamic properties. Examples of aircraft shape changes include growth or shrinkage of bumps, conformal changes in wing planforms, cambers, twists, and bending of integrated leading and trailing-edge flaps. Prior to this invention, there was no way of providing smooth aerodynamic surfaces capable of large deflections while maintaining smoothness and sufficient rigidity.

Posted in: Briefs, Coatings & Adhesives, Materials

Read More >>

Aeroplastic Composites

Aeroplastic refers to a family of polymeric composites with properties that provide a significant reduction in heat transfer. These composites reduce the thermal conductivity of the base polymer resin between 20%-50% without changing its mechanical properties or modifying the original techniques for processing those polymers. The composites can be made into fibers, molded, or otherwise processed into usable articles. Aeroplastic composites are superior alternatives to prior composite materials with respect to both their thermal conductivity and physical properties.

Posted in: Briefs, Coatings & Adhesives, Materials

Read More >>

Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response

SMA training can be completed in a matter of minutes, rather than days or even weeks. Shape memory alloys (SMAs), sometimes known as “smart metals,” provide a lightweight, solid-state alternative to conventional actuators and switches, such as hydraulic, pneumatic, or motor-based systems. To function properly, SMAs must be “trained” to return to a previous form when heated, and innovators at NASA’s Glenn Research Center have developed a remarkable new method of completing this training at a fraction of the time and cost of conventional training techniques. Glenn’s technique uses mechanical cycling, rather than more complicated and time-consuming thermal cycling, to train SMAs before implementation. In addition, this new approach to training allows SMAs to be applied to complex geometric components, so that they may be used in a broader number of applications.

Posted in: Briefs, Materials

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.