Home

Aerofoam

This foam composite insulation can be optimized for different material properties.Aerofoam is a unique foam composite insulation with improved thermal and acoustic insulation properties. The novelty of this invention comes from combining a polymer foam with a unique inorganic filler in a way that maximizes thermal performance while maintaining mechanical performance, chemical resistance, fire resistance, and acoustic insulation capabilities. The development of new manufacturing processes has also allowed for the development of these unique composite materials.

Posted in: Briefs, Materials

Read More >>

Composite Pressure Vessel Including Crack Arresting Barrier

NASA’s Marshall Space Flight Center innovators have developed several new designs and methods of fabrication for composite and composite-overwrapped tank vessels that help significantly improve their structural integrity against impact, abrasion, harsh environments, and fire. Several embodiments of this technology portfolio also enable production of composite tanks capable of transporting liquefied natural gas or other cryogenic liquids. These innovations are applicable to important aerospace needs, including propulsion systems, as well as new and growing fields such as natural gas transportation.

Posted in: Briefs, Materials

Read More >>

Process for Preparing Aerogels from Polyamides

This technology can be used in construction, garments, appliances, and camping gear.Sometimes referred to as “solid smoke,” aerogels are the world’s lightest solid materials, composed of approximately 85% air by volume. Polyamide aerogels open up a whole new world of applications due to their unique properties: translucent like silica aerogels, thermoplastic, ultra-low density, superior mechanical properties, low-temperature operating range, and highly flexible (as compared to NASA Glenn’s polyimide aerogels). Polyamide aerogels are further novel because of their tunable glass transition temperatures, meaning that crystallinity — and hence strength — can be controlled via operating temperature. Addressing the key drawbacks of aerogel technology (hydroscopicity, fragility, cost), NASA Glenn’s suite of organic aerogels is cost-competitive with both existing silica aerogels and, with scale-up, high-end foamed polymer insulation. Finally, Glenn’s materials are truly multi-functional — they can be structural members while providing superior thermal properties and extremely low dielectric (near that of air).

Posted in: Briefs, Materials

Read More >>

Advanced Multilayer Environmental Barrier Coatings

Innovators at NASA’s Glenn Research Center have created exciting new developments in thermal barrier coatings, both in the chemical compositions of the coatings and in the process by which they are applied. NASA’s researchers have developed a revolutionary bond coat system that improves the performance of silicon-carbide/silicon- carbide ceramic matrix composites (SiC/SiC CMCs). This groundbreaking system enables higher-temperature operating conditions, protects against erosion and corrosion, and reduces mechanical loading. NASA’s scientists have also designed a means of creating multilayer thermal and environmental barriers with a remarkable new deposition technique to improve the coverage and quality of the coatings.

Posted in: Briefs, Coatings & Adhesives, Materials

Read More >>

Adaptive Thermal Management System

This technology employs a unique way to autonomously regulate the temperature of a structure or vessel.NASA seeks to license the Adaptive Thermal Management System (ATMS) for use in commercial applications. Developed at the John F. Kennedy Space Center, the ATMS provides a way to regulate heat transfer and enable thermal management between two opposing surfaces in either direction. The system has the capability to adapt to provide conductive or insulative functionality depending on environmental conditions or applied stimuli. The ATMS can be designed for use in manufacturing, storage vessels, fluid transfer, aerospace and building architectures, and many other applications to reduce unwanted heat transfer, lower energy usage, or maintain environments at a specific temperature. The ATMS is part of NASA’s technology transfer program, which seeks to promote the commercial use of NASA-developed technologies.

Posted in: Briefs, Materials

Read More >>

Method of Bonding Dissimilar Materials

Elastic adhesive overcomes the problems associated with large differences in thermal expansion coefficients. An image of the Materials International Space Station Experiment-5 (MISSE-5) samples prior to launch shows a golden thermal blanket with flexible material samples attached. NASA’s Goddard Space Flight Center has developed a new method for bonding dissimilar materials using an elastic adhesive to permit the bond to withstand variations in temperature and pressure. Specifically, NASA uses this method to provide a >98% specular finish on composite materials that is proven capable of withstanding ultraviolet solar radiation exposure in a vacuum and thermal cycling from –115 °C to +65 °C, as well as meeting outgassing requirement limits of 1%.

Posted in: Briefs, Materials

Read More >>

Nanoencapsulated Aerogels Produced by Monomer Vapor Deposition and Polymerization

This technology provides a method for making strong and lightweight aerogels with insulating properties. The nano-encapsulated aerogel technology has the strength and insulation properties for many applications. The Johnson Space Center researched methods to coat aerogel insulation in order to make it better able to withstand vibration, mechanical compression and flexure, and other environmental damage. This NASA-developed nanoencapsulated aerogel technology is a method for increasing the strength of the aerogel through a coating process while maintaining its insulating properties. With this ruggedizing process, the coating of the aerogel reduces mechanical damage, enabling its practical use in products that might not be suitable with the more fragile aerogel. The basic coating can also shield it from adsorbing humidity or other gases, which could otherwise bind to the substance and change its properties. Functionalized coatings could be developed to adsorb certain gases if that is desired. Aerogel’s low density and extremely low thermal conductivity make it useful as a lightweight, volume-efficient insulation material. Encapsulating the aerogel expands its ability to be incorporated into products that are exposed to vibration and compression during manufacture, shipping, or use. It can also improve its flexibility, opening up a range of new product uses.

Posted in: Briefs, Materials

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.