Home

Optical Fiber for Solar Cells

These materials enable new solar-powered devices that are small, lightweight, and can be used without connection to existing electrical grids. Ames Research Center, Moffett Field, California Polymeric and inorganic semiconductors offer relatively high quantum efficiencies, and are much less expensive and versatile to fabricate than non-amorphous silicon wafers. An optical fiber and cladding can be designed and fabricated to confine light for transport within ultraviolet and near-infrared media, using evanescent waves, and to transmit visible wavelength light for direct lighting.

Posted in: Briefs, Energy Storage, Solar Power, Fiber Optics

Read More >>

Carbon Nanotube Tower-Based Supercapacitor

Ames Research Center, Moffett Field, California A new technology to create electrochemical double-layer supercapacitors is provided using carbon nanotubes as electrodes of the storage medium. This invention allows efficient transport between the capacitor electrodes through the porous nature of the nanotubes, and has a low interface resistance between the electrode material and the collector. Carbon nanotubes directly grown on a metal surface are used to improve the supercapacitor performance. The nanotubes offer a high surface area and usable porosity for a given volume and mass, both of which are highly desirable for supercapacitor operation.

Posted in: Briefs, Energy Storage

Read More >>

Developing Ceramic-Like Bulk Metallic Glass Gears

This technology has applications in gears, bearings, and gearboxes for automotive, spacecraft, and robotics. NASA’s Jet Propulsion Laboratory, Pasadena, California This invention describes systems and methods for implementing bulk metallic glass-based (BMG) macroscale gears with high wear resistance. This invention creates bulk metallic glasses (BMGs) with selected mechanical properties that are very similar to ceramics, such as high strength and resistance to wear, but without high melting temperatures. Ceramics are high-strength, hard materials that are typically used for their extremely high melting temperatures. Because of their extreme hardness, ceramics are optimal materials for making gears, due to their low wear loss. Unfortunately, ceramics suffer from low fracture toughness (typically <1 MPa·m1/2), and their high melting temperatures prevent them from being cast into net-shaped parts. Ceramic gears, for example, must be ground to a final shape at great expense.

Posted in: Briefs, Ceramics, Metals

Read More >>

Researcher Spotlight: Atom­Thick Material Offers 2D Imaging Possibilities

Rice University scientists have developed a two-­dimensional, atom­-thick, light-­sensitive material called CIS, a single­-layer matrix of copper, indium, and selenium atoms. Sidong Lei, a graduate student, also built a prototype — a three-­pixel charge­-coupled device (CCD) sensor — to prove the material’s ability to capture an image. The optoelectronic memory material may be the basis for future flat imaging devices and two­-dimensional electronics.

Posted in: Articles, Sensors

Read More >>

Customizing Visual 3D Optical Coatings

There are many ways to coat an optic and optimize the coating for a specific application, some more interesting than others. But any thin film coating process requires raw materials, coating capabilities, deposition chamber(s), coating software, a spectrophotometer, and an efficient production system that can produce the desired coating or effect while keeping within the customer’s requisite specifications. This article will focus on the challenge of customizing a non-polarizing cube beamsplitter for a 3D visual application and detail the steps taken to make this challenge a reality.

Posted in: Articles, Features, Coatings & Adhesives, Optics, Photonics

Read More >>

Modeling Transmission Effects on Multilayer Insulation

New mathematical modeling of multilayer insulation performance extends over a much wider range of performance criteria than other known models. John F. Kennedy Space Center, Florida Recent experimental results within the NASA community have shown apparent degradation in the performance of multilayer insulation (MLI) when used in low-temperature applications, e.g., in liquid hydrogen tanks. There was speculation that this degradation was due to the appearance of radiative transmission of energy at these low temperatures since the black-body emission curve at low temperatures corresponds to long wavelengths that might be able to partially pass through the MLI sheets. The standard models for MLI could not be extended to include transmission effects, so a new mathematical system was developed that generalizes the description of the performance of this insulation material.

Posted in: Briefs, TSP, Coatings & Adhesives

Read More >>

Woven Thermal Protection System

Ames Research Center, Moffett Field, California Woven thermal protection system (WTPS) is a new approach to producing TPS materials that uses precisely engineered 3D weaving techniques to customize material characteristics needed to meet specific missions requirements for protecting space vehicles from the intense heating generated during atmospheric entry. Using WTPS, sustainable, scalable, mission-optimized TPS solutions can be achieved with relatively low lifecycle costs compared with the high costs and long development schedules currently associated with material development and certification. WTPS leverages the mature weaving technology that has evolved from the textile industry to design TPS materials with tailorable performance by varying material composition and properties via the controlled placement of fibers within a woven structure. The resulting material can be designed to perform optimally for a wide range of entry conditions.

Posted in: Briefs

Read More >>