Home

The Ultimate Shaft-To-Hub Connection

Polygon Shapes - Multi-Faceted Problem Solvers Kinematically ground polygonal shapes have been used as drive connections for more than 45 years. What is now referred to as Polygon Systems was developed by Fortunawerke, Stuttgart, West Germany, who patented a grinding machine capable of producing matched polygonal shaft and bore diameters.

Posted in: White Papers, White Papers, Mechanical Components, Mechanics

Read More >>

Integrated Epoxy Feedthroughs Improve Fuel Pump Reliability

Of all the design decisions that affect the operation of an in-tank fuel pump, the way you seal the pump housing may top the list. A bad seal will allow liquid fuel to work its way into the housing, which will eventually corrode the electronics and potentially cause a risk of fire.

Posted in: White Papers, Aeronautics, Defense, Mechanical Components, Mechanics

Read More >>

The Best Springs You Haven't Tried Yet

Flat wire wave springs offer the best balance of size and spring force. Here’s what you need to know to design with these high-performance alternatives to traditional springs. Discussed in this paper are the different styles of wave springs and the design advantages offered to the engineer, such as axial space savings, no torsional loads, consistent spring force, dimensional tolerances improvements, increased travel, etc. Additionally it shows some application examples and includes a formulas page for spring calculations.

Posted in: White Papers, Mechanical Components, Motion Control

Read More >>

Wire Wound Springs versus Machined Springs; A Comparison

This white paper addresses the high points of choosing between Machined Springs and Wire Wound Springs, and goes into further detail regarding the unique differences that can significantly affect design considerations. Complete with charts detailing technical benefits between the two methods of producing springs. This educational white paper is an essential reference document for any engineer working with mechanical components.

Posted in: White Papers, Mechanical Components

Read More >>

Lightweight, Reusable Payload Launch and Transportation Latch

This device can be used for latching cargo in aircraft, supporting hazardous materials, or latching pallets and shipping boxes.This innovation addresses the problem of automatic engagement and disengagement of payloads from their transport vehicle when lifted by a crane or other material handling device. The prior state-of-the-art is in material handling devices that require personnel to activate the latch, or latches that are actuated by heavy, bulky actuator systems fixed to the transportation device. These require significant accommodations on the transport vehicle to mate to the latch.

Posted in: Briefs, Mechanical Components, Mechanics

Read More >>

Structural Assembly Incorporating Integral Thermal Heat Spreader for Cold Plate Cooling

Lyndon B. Johnson Space Center, Houston, Texas In a structural cold plate, typically there is a structural member such as a honeycomb panel or a brazed sandwich assembly that provides the structural strength, and at least one cold plate that cools equipment attached to the structural member. The cold plate is typically located between the structural member and the item it is cooling. With this configuration, the cold plate’s location, shape, and size are limited to being placed beneath the item it is cooling. This requires an additional envelope that is equal to the cold plate thickness. Being able to locate the cold plate in locations other than beneath the item it is cooling would have multiple benefits including reduced envelope requirements in the direction of the item it is cooling, as well as allowing a larger cold plate cooling footprint.

Posted in: Briefs, Mechanical Components

Read More >>

Advanced Magnetostrictive Regulator, Valve, and Force-to-Angle Sensor

The components are lightweight, compact, highly precise, and can operate over a wide range of temperatures and pressures.Typical aerospace rocket engines use valves to control the flow and pressures of propellant and pressurants. These typical valves are designed to operate with a mechanical, electromechanical, or pneumatic operator. They all have at least one, and often multiple, penetrations from the fluid to the operator’s prime mover. The penetrations are sources for leaks, failures, and are often considered to be unreliable for use in single string systems. Therefore, the fluid system designer frequently will utilize several parallel path valves, effectively doubling the resources needed to accomplish the task. These redundant valves allow for isolation of the potentially leaking fluid penetrations. If the systems cannot afford the multiple path approach, then the valves are subjected to high levels of testing and quality control, or utilize bellows or other expensive and difficult to handle/design and costly features.

Posted in: Briefs, Mechanical Components, Mechanics

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.