Home

Aircraft Wings Change Shape in Flight

The EU project SARISTU (Smart Intelligent Aircraft Structures) aims to reduce kerosene consumption by six percent, and integrating flexible landing devices into aircraft wings is one step towards that target. A new mechanism alters the landing flap’s shape to dynamically accommodate the airflow. Algorithms to control the required shape modifications in flight were programmed by the Fraunhofer Institute for Electronic Nano Systems ENAS in Chemnitz, in collaboration with colleagues from the Italian Aerospace Research Center (CIRA) and the University of Naples."We’ve come up with a silicon skin with alternate rigid and soft zones,” Said Andreas Lühring from Fraunhofer IFAM. “There are five hard and three soft zones, enclosed within a silicon skin cover extending over the top.”The mechanism sits underneath the soft zones, the areas that are most distended. While the novel design is noteworthy, it is the material itself that stands out, since the flexible parts are made of elastomeric foam that retains their elasticity even at temperatures ranging from -55 to 80° Celsius.Four 90-centimeter-long prototypes — two of which feature skin segments — are already undergoing testing.SourceAlso: Learn about Active Wing Shaping Control.

Posted in: News, Aviation

Read More >>

Lubricant Selection: What Every Design Engineer Needs to Know

Simply stated, lubrication refers to the age-old science of friction reduction. People have been using lubricants for thousands of years, experimenting with waxes and oils from vegetables, fish, and animals to move heavy materials with equipment designed to gain mechanical advantage. In more recent years, the discovery of petroleum oil in the 1800s ushered in a new era of lubrication developments as people learned how to refine this oil and use it for a variety of purposes. Machinery could now be developed to operate faster and under heavier loads by using lubricants to create a barrier that eliminates friction and metalon- metal contact.

Posted in: White Papers, White Papers, Machinery & Automation

Read More >>

The Ultimate Shaft-To-Hub Connection

Polygon Shapes - Multi-Faceted Problem Solvers Kinematically ground polygonal shapes have been used as drive connections for more than 45 years. What is now referred to as Polygon Systems was developed by Fortunawerke, Stuttgart, West Germany, who patented a grinding machine capable of producing matched polygonal shaft and bore diameters.

Posted in: Mechanics, White Papers, White Papers

Read More >>

Head-Mounted Display Latency Measurement Rig

This technique can be used to characterize systems for product improvement by virtual/augmented reality display manufacturers. Langley Research Center, Hampton, Virginia The device and method are used to quantify end-to-end latency of head- or helmet-mounted display with head tracking systems in a laboratory or in situ. All commercial or custom head-mounted display systems that track the user’s head for the purpose of virtual or augmented reality applications encounter positional display errors due to system latency. A basic head-mounted display (HMD) with head-tracking system is comprised of (1) a near-to-eye display, (2) the head-tracking system, (3) one or more symbology or image sources, and (4) the display/image processor. Each element, and the communication among them, contributes a portion to the total latency. HMD system latency manifests as erroneous alignment of the virtual and real surroundings as the head is slewed, and is known to induce simulator sickness and other physiological issues. Therefore, minimal system latency is a design goal to reduce these physiological symptoms. The overall latency budget is the sum of time required to measure the dynamic head position, communicate the position to the display processor, compute the scene based on the position, integrate imagery, and render the scene to the display.

Posted in: Mechanics, Briefs, TSP

Read More >>

Workspace-Safe Operation of a Force- or Impedance-Controlled Robot

This technology can be used for automatic control of a robot that may come into contact with an object or operator in its workspace. Lyndon B. Johnson Space Center, Houston, Texas Precise motion control of a robot by controlling its various robotic manipulators may be organized by the required level of task specification. The levels include object-level control, which describes the ability to control the behavior of an object held in a single or a cooperative grasp of the robot; end-effector control, which is control of the various manipulators such as robotic fingers and thumbs; and joint-level control. Collectively, the various control levels achieve the required mobility, dexterity, and work task-related functionality.

Posted in: Mechanics, Briefs, TSP

Read More >>

Cryogenic Mixing Pump with No Moving Parts

The pump is self-priming and can efficiently pump two-phase fluid. John H. Glenn Research Center, Cleveland, Ohio Refueling spacecraft in space offers tremendous benefits for increased payload capacity and reduced launch cost, but the problem of thermal stratification in long-term storage tanks presents a key challenge. To meet this challenge, a reliable, compact, lightweight, and efficient cryogenic mixing pump was developed with no moving parts. The pump uses an innovative thermodynamic process to generate fluid jets to promote fluid mixing. This thermodynamic process eliminates moving parts to generate pumping action. Inherent to its design, the pump is self-priming and can efficiently pump two-phase fluid. The device will significantly enhance the reliability of pressure control systems for storage tanks.

Posted in: Mechanics, Briefs, TSP

Read More >>

Seal Design Feature for Redundancy Verification

The technology may be of interest to designers of high-altitude aircraft and submarine vessels. Lyndon B. Johnson Space Center, Houston, Texas NASA has requirements for redundant seals to protect human-occupied cabin atmospheres, as well as fluid and gas systems in space vehicles exposed to the harsh environments. Comparable requirements have been passed down to the International Space Station (ISS) Program, and are now levied on the Orion Multi-Purpose Crew Vehicle (MPCV).

Posted in: Mechanics, Briefs

Read More >>