Home

ACS Anchor Guide Stud and Caddy

Goddard Space Flight Center, Greenbelt, Maryland An alignment guide and a mounting interface for two of the repair tools on orbit during the Hubble Space Telescope Servicing Mission 4 (see http://asd.gsfc.nasa.gov/archive/hubble/missions/sm4.html) were developed. This design can be installed in a timely manner, and was specifically developed for a worksite with minimal access and minimal visual line-of-sight to the worksite. In addition, this technology was specifically designed for on-orbit work by astronauts, and can be used for any space-related work where an alignment aid or mounting interface is required.

Posted in: Briefs, TSP, Fastening, Joining & Assembly

Read More >>

Next-Generation, Lightweight Hard Upper Torso/Hatch Assembly

Lyndon B. Johnson Space Center, Houston, Texas The current MK-III carbon-graphite/epoxy Hard Upper Torso (HUT)/hatch assembly represented an 8.3 psi (≈57 kPa) technology demonstrator model of a zero pre-breathe suit. In this configuration, the MK-III suit weighed about 120 lb (≈54 kg). Since future lunar/planetary suits will need to operate under the influence of gravity, as well as operate at 4.3 psi (≈30 kPa), the weight of the suit had to be reduced to a minimum of 79 lb (≈36 kg) with the incorporation of lightweight structural materials and slight HUT/hatch assembly geometric redesign.

Posted in: Briefs, TSP

Read More >>

Elastic Deployable Composite Tubular Roll-Out Boom

Goddard Space Flight Center, Greenbelt, Maryland The objective of this work was to develop an innovative deployable boom/structure technology that is ultra-lightweight (<30-grams/meter potential), and has extremely compact stowage volume (>100:1 compaction ratio), broad scalability (no size limits envisioned), high deployed frequency, high deployed strength, good thermal/dimensional stability, reliable/immediate and repeatable controlled deployment, high stiffness maintained during the entire deployment sequence, affordability (simple, easily produced tubular structure, very low parts count, and proven tube manufacture provides low cost and rapid assembly), space environmental survivability, and broad mission applicability.

Posted in: Briefs, TSP

Read More >>

Reduced-Speed Duplex-Ring Seal

This configuration seals fluid flow and pressure at a significant increase in machine shaft speed. John H. Glenn Research Center, Cleveland, Ohio Ring seals are used in rotating union applications where a fluid flow or hydraulic pressure signal is transferred from a static reference frame to a rotating component, such as a shaft, for the purpose of providing lubrication and/or a hydraulic signal to a component(s) in a rotating frame of reference. Ring seals are used in physically compact configurations.

Posted in: Briefs, TSP

Read More >>

Performing Launch Depressurization Test on Large Test Articles Using Two Vacuum Chambers in Tandem

NASA’s Jet Propulsion Laboratory, Pasadena, California Two vacuum chambers were used in tandem to perform a launch depressurization test. The test article was mounted in a 10-ft (≈3 m) Vertical Vacuum Chamber (Chamber 248-10). The 25-ft (≈7.6-m) Space Simulator (Chamber 150-25) was rough-pumped and used for ullage.

Posted in: Briefs, TSP

Read More >>

Sampling Mechanism for a Comet Sample Return Mission

A similar sampling mechanism could be deployed in dangerous situations on Earth. Goddard Space Flight Center, Greenbelt, Maryland Sample return missions have the ability to vastly increase scientific understanding of the origin, history, current status, and resource potential of solar system objects including asteroids, comets, Mars, and the Moon. However, to make further progress in understanding such bodies, detailed analyses of samples are needed from as many bodies as possible. A standoff sample collection system concept has been developed that would quickly obtain a sample from environments as varied as comets, asteroids, and permanently shadowed craters on the Moon, using vehicles ranging from traditional planetary spacecraft to platforms such as hovering rotorcraft or balloons on Mars, Venus, or Titan. The depth of penetration for this harpoon- based hollow collector was experimentally determined to be proportional to the momentum of the penetrator in agreement with earlier work on the penetration of solid projectiles. A release mechanism for the internal, removable sample cartridge was tested, as was an automatic closure system for the sample canister.

Posted in: Briefs, TSP, Machinery & Automation, Monitoring

Read More >>

Design for Improving the Flatness of Solar Sails

An optically flat solar sail could be useful in optical communication and solar energy applications. NASA’s Jet Propulsion Laboratory, Pasadena, California This work describes a discontinuous or segmented mirror whose overall flatness is less dependent on the limited tension that can be supplied by the booms. A solar sail is a large, nominally flat sheet of extremely thin reflectorized film rigidly attached to a spacecraft, enabling propulsion via solar radiation pressure. Rip-stop fibers embedded in the backside of the film — with diameters ≈100× the thickness of the film — are commonly used to arrest tear propagation, which can easily occur in the handling and/or deployment of these gossamer-thin structures. Typically, the thin film or membrane that is the sail is systematically folded to enable both volumetrically compact transportation to space and mechanized deployment. It is the aggressive folding and creasing of the thin film that limits the ultimate flatness that can be achieved.

Posted in: Briefs, TSP, Solar Power

Read More >>