Metal Stamping Design Guidelines

Metal Stamping provides an economical way to produce quantities of parts that can possess many qualities, including strength, durability, wear resistance, good conductive properties, and stability. In this paper, we are sharing some ideas that can help you design a part that optimizes all the features that the metal stamping process offers.

Posted in: Briefs, TSP, Aeronautics, Manufacturing & Prototyping, Materials, Mechanical Components


Deployable Perimeter Truss with Blade Reel Deployment Mechanism

Applications include pop-up tents, deployable deck awnings, and pop-up lawn chairs.Solar sail technology depends heavily on the total surface area of the sail. In other words, minimizing mass and volume of its support structure is the main objective, particularly when it comes to launch configuration, i.e. mass, volume constraints, etc. There is a need to develop a low-cost concept of a deployable support structure that can stow in the EELV Secondary Payload Adapter (ESPA) volume, and carries as much sail material as possible. This structure must then be able to deploy the sail material out, and provide the surface area needed.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Solar energy, Packaging, Lightweighting, Spacecraft


NEO Hunter Seeker Micro-Spacecraft and Mission Concept

Spacecraft mass and mission cost can be drastically reduced, including the ability to not only discover, but visit near Earth objects.The area of research known as “Planetary Defense” is largely concerned with identifying and tracking asteroids that could impact Earth. The vast majority of asteroids that pose such a risk are known as “Near Earth Asteroids/Objects” or NEAs and NEOs. Some of them are unknown, un-cataloged, and untracked, but are presumed to orbit in Earth-like orbits, and periodically cross Earth’s orbit in a possibly threatening manner.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Imaging and visualization, Particulate matter (PM), Spacecraft


Multipath, Multistage, Erosion-Resistive Valve for Downhole Flow Control

This valve can sustain the extremely high pressure of deep oil wells.Multipath, multistage, erosion-resistant flow control valves have been developed that can sustain the extremely high pressure of deep oil wells. Fitting in the restricted available space and operating using limited power with a long lifetime are challenges for choke valves in the downhole environment of oil wells. These valves must control the flow rate from high-pressure oil reservoirs in the presence of fluids that have non-zero sand concentrations. This design consists of a digitized flow control valve with multipath and multistage pressure reduction structures. Specifically, the valve is configured as a set of parallel flow paths from the inlet to the outlet.

Posted in: Briefs, TSP, Mechanical Components, Mechanics, Drilling, Valves, Mining vehicles and equipment


Passive Close-Off Feature for Sample Acquisition and Retention

This design has applications in the oil and gas field, and in coring to collect samples from human internal organs for medical applications. NASA’s Jet Propulsion Laboratory, Pasadena, California The current coring bit and percussive drilling style works very well for strong rocks; however, when coring into weak, crumbling rock, the core tends to break apart and simply fall out of the bit. These rocks, powder, and other debris can have useful information that is lost when they fall out of the bit after the core has been made, as there is no retention feature in place. A retention mechanism for coring into weak rocks was developed.

Posted in: Briefs, TSP, Mechanical Components, Mining vehicles and equipment


Piezoelectric-Actuated Cryogenic Thermodynamic Vent Valve

Piezoceramic transducer elements with ceramic dielectric coating were successfully used in the actuator system. Lyndon B. Johnson Space Center, Houston, Texas Cryogenic fluid control valves require actuation that controls the geometric position of the orifice in a thermally stable manner. Traditional actuator devices may have various materials used in their construction that have varying CTEs (coefficients of thermal expansion) and therefore may shift (expand or contract) relative to the reference mounting points on the valve body. This leads to a lack of valve orifice control and leakage in the valve. To provide a more thermally stable control valve for cryogenic fluids, Dynamic Structures and Materials LLC (DSM LLC) provided a piezoelectric ceramic-driven actuation system on a cryogenic thermodynamic vent system (TVS) valve.

Posted in: Briefs, TSP, Mechanical Components, Sensors and actuators, Thermodynamics, Ceramics, Valves


Decelerator System Simulation (DSS)

Lyndon B. Johnson Space Center, Houston, Texas The Crew Exploration Vehicle Parachute Assembly System (CPAS) project conducts computer simulations to verify that requirements on flight performance, parachute loads, and terminal rate of descent are met. The objective of this work was to obtain a high-fidelity simulation of Orion crew capsule flight test vehicles during parachute flight.

Posted in: Briefs, TSP, Mechanical Components, Computer simulation, Entry, descent, and landing, Spacecraft


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.