Home

Breakthrough Energy Innovation: Ambition and Urgency

Climate change goals, customer sustainability expectations and pressure to reduce waste demand ambition and urgency from industry to deliver breakthrough energy innovation. Engineering simulation is a key enabler to achieve these breakthroughs. From startups to multinationals, businesses are using engineering simulation to explore the much broader design spaces in the areas of advanced electrification, machine and fuel efficiency, aerodynamic design, effective lightweighting and thermal optimization.

Posted in: White Papers, Electronics & Computers, Energy, Simulation Software

Read More >>

Key Considerations for Powertrain HIL Test

Safety, availability, and cost considerations can make performing thorough tests of embedded control devices using the complete system impractical. Hardware-in-the-loop (HIL) simulation is a real-time test technique used to test these devices more efficiently. During HIL test, the physical system that interfaces to an embedded control device is simulated on real-time hardware, and the outputs of the simulator mimic the actual output of the physical system. The embedded controller “thinks” it is in a real system. HIL simulation meticulously tests embedded control devices in a virtual environment before proceeding to real-world tests of the complete system. This application note covers recommended best practices for powertrain HIL testing.

Posted in: White Papers, Electronics, Electronics & Computers, Simulation Software, Software

Read More >>

Tailor-made Computing Solutions Require Diverse I/O Functions

More than ever, users from industry and transportation expect the full system solution, but no longer want to have to worry about the cumbersome configuration and integration of individual hardware components and adapting the software. There is a very simple reason for this: the system supplier of their choice reduces the time to market and is also responsible for the entire system at the same time.

Posted in: White Papers, Communications, Electronics, Electronics & Computers, Electronics & Computers, Software

Read More >>

Adaptive Refinement Tools for Tetrahedral Unstructured Grids

This software can potentially be used in aerospace, aviation, and automotive applications. NASA’s Langley Research Center engineers have developed a new software package for more facile computational fluid dynamics. The software’s fast user run time, robustness, and efficiency have enabled its extensive use in space shuttle modeling. Adaptive Refinement Tool (ART) permits the computational modeling of flow, including jet or rocket plumes, wakes, and shocks via unstructured tetrahedral grids. Commercially available software packages often struggle to sufficiently and quickly model such complex examples of flow. ART also allows cells to be divided into two, four, or eight cells as compared to traditional software, which allows cell division only in units of eight. This is advantageous as it allows the user to control cell division more succinctly. ART executes commands via colloquial English, and has built-in internal statistical programming that increases its ease of use. ART allows the user the choice of alternate variables such as temperature or pressure at will, which facilitates modeling unusual or unlikely occurrences.

Posted in: Briefs, Software

Read More >>

Self-Stabilizing, Byzantine-Fault-Tolerant Clock Synchronization System and Method

Initially developed for wired applications, the technology could also be applied to wireless systems. NASA’s Langley Research Center has developed a portfolio of technologies regarding clock synchronization in distributed systems. Distributed synchronous systems that need to provide globally coordinated operations require each component (node) in the system to be precisely synchronized. Such systems could include electronic components within an aircraft or automobile, or large-scale networks of components that communicate with each other (e.g. multiple aircraft or automobiles). NASA’s technologies provide for very quick synchronization while tolerating various faults. These protocols provide distributed autonomous synchronization (i.e. no master clock signal required) and do not rely on any assumptions regarding the initial state of the system or internal status of the nodes.

Posted in: Briefs, Software

Read More >>

Method of Performing Computational Aeroelastic Analyses

This technology can be used for dynamic behavioral models of large buildings, bridges, dams, and towers. NASA’s Langley Research Center has developed unsteady aerodynamic Reduced-Order Models (ROMs) that significantly improve computational efficiency compared to traditional analyses of aeroelastic and other complex and unsteady systems. Traditional methods rely on the repetitive use of aeroelastic computational fluid dynamics (CFD) codes, and the iteration between the structural and nonlinear aerodynamic models of the aeroelastic CFD code for predicting the aeroelastic response of flight vehicles is very time-consuming and computationally expensive. The new ROMs are quite different from the traditional aeroelastic analysis tools, and enable the computational aeroelastic analysis of flight vehicles at a fraction of the time and cost.

Posted in: Briefs, Software

Read More >>

Fourier Transform Spectrometer Performance Modeling

This software models the performance of a Fourier transform spectrometer (FTS). More specifically, it is able to add a number of noise/error sources to the interferogram and transform the errors back to the spectral domain.

Posted in: Briefs, Software

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.