Method of Performing Computational Aeroelastic Analyses

This technology can be used for dynamic behavioral models of large buildings, bridges, dams, and towers. NASA’s Langley Research Center has developed unsteady aerodynamic Reduced-Order Models (ROMs) that significantly improve computational efficiency compared to traditional analyses of aeroelastic and other complex and unsteady systems. Traditional methods rely on the repetitive use of aeroelastic computational fluid dynamics (CFD) codes, and the iteration between the structural and nonlinear aerodynamic models of the aeroelastic CFD code for predicting the aeroelastic response of flight vehicles is very time-consuming and computationally expensive. The new ROMs are quite different from the traditional aeroelastic analysis tools, and enable the computational aeroelastic analysis of flight vehicles at a fraction of the time and cost.

Posted in: Briefs, Software, Mathematical models, Aerodynamics


Fourier Transform Spectrometer Performance Modeling

This software models the performance of a Fourier transform spectrometer (FTS). More specifically, it is able to add a number of noise/error sources to the interferogram and transform the errors back to the spectral domain.

Posted in: Briefs, Software, Finite element analysis, Computer software and hardware, Spectroscopy, Noise


Mesh Adaptation Module for Cartesian Meshes with Embedded Boundaries

Future applications include rapid prototyping, computer-based imaging and visualization, and semiconductor device modeling. This work extends the mesh generation capability of NASA’s Cart3D flow simulation software package to permit cell-by-cell mesh enrichment. Cart3D allows users to perform automated Computational Fluid Dynamics (CFD) analysis on a complex geometry. It includes utilities for geometry import, surface modeling and intersection, mesh generation, flow simulation, and post-processing of results. Geometry enters into Cart3D in the form of surface triangulations that may be generated from within Computer-Aided Design (CAD) packages, from legacy surface triangulations, or from structured surface grids. Cart3D uses adaptively refined Cartesian grids to discretize the space surrounding geometry, and cuts the geometry out of the set of cut-cells that actually intersects the surface triangulation.

Posted in: Briefs, Software, CAD, CAM, and CAE, Computational fluid dynamics


A Soft Control Architecture: Breakthrough in Hard Real-Time Design for Complex Systems

How to cut costs, improve quality, and differentiate your products with a software-based approach to machine automation OEMs have long relied on expensive, cumbersome hardware like FPGAs and DSPs for precision motion control. But new advances in software-based machine automation are changing that paradigm, with huge potential benefits.

Posted in: White Papers, Electronics & Computers, Manufacturing & Prototyping, Motion Control, Machinery & Automation, Robotics, Semiconductors & ICs, Software


5 Real-Time, Ethernet-Based Fieldbuses Compared

Ethernet-based fieldbus standards have changed the game for machine builders. But with so many protocols competing to be most valuable and viable, how should you decide which to use?

Posted in: White Papers, Electronics & Computers, Motion Control, Machinery & Automation, Robotics, Software


Life Sciences Guidebook: Best Practices for FDA Compliance Solutions

In a market where high-demand causes organizations to seek software systems that will fit into their complex business infrastructure, the pressure to find the right system often causes angst to many. Learn some of the key elements to spotting a good FDA Compliance solution, techniques for achieving GMP Compliance, and how to ensure that Quality and Compliance are met in the Life Science industry.

Posted in: White Papers, White Papers, FDA Compliance/Regulatory Affairs, Software


Safety in SoCs

Accelerating the Road to ISO 26262 Certification With Processor IP Today’s system-on-chip (SoC) designs are becoming more complex, increasing the pressure on verification and design teams to deliver fully functional designs. Recent studies have shown that over 50% of the development time on a complex IC is now being spent on verification, revealing the severity of the problem project teams are facing. As more SoC designs are used in electronic systems deployed in safety-critical applications, adhering to functional safety standards such as ISO 26262 has become an important consideration when defining the verification methodology. This white paper outlines the key requirements for ISO 26262 certification and demonstrates how to accelerate the development of safety-critical IP and SoCs through the use of out-of-the-box safety-ready IP with advanced verification qualification tools and methodologies.

Posted in: White Papers, Electronics & Computers, Electronics & Computers, Software


The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.