Method of Performing Computational Aeroelastic Analyses

This technology can be used for dynamic behavioral models of large buildings, bridges, dams, and towers.

NASA’s Langley Research Center has developed unsteady aerodynamic Reduced-Order Models (ROMs) that significantly improve computational efficiency compared to traditional analyses of aeroelastic and other complex and unsteady systems. Traditional methods rely on the repetitive use of aeroelastic computational fluid dynamics (CFD) codes, and the iteration between the structural and nonlinear aerodynamic models of the aeroelastic CFD code for predicting the aeroelastic response of flight vehicles is very time-consuming and computationally expensive. The new ROMs are quite different from the traditional aeroelastic analysis tools, and enable the computational aeroelastic analysis of flight vehicles at a fraction of the time and cost.

Posted in: Briefs, Software, Mathematical models, Aerodynamics

Fourier Transform Spectrometer Performance Modeling

This software models the performance of a Fourier transform spectrometer (FTS). More specifically, it is able to add a number of noise/error sources to the interferogram and transform the errors back to the spectral domain.

Posted in: Briefs, Software, Finite element analysis, Computer software and hardware, Spectroscopy, Noise

Mesh Adaptation Module for Cartesian Meshes with Embedded Boundaries

Future applications include rapid prototyping, computer-based imaging and visualization, and semiconductor device modeling.

This work extends the mesh generation capability of NASA’s Cart3D flow simulation software package to permit cell-by-cell mesh enrichment. Cart3D allows users to perform automated Computational Fluid Dynamics (CFD) analysis on a complex geometry. It includes utilities for geometry import, surface modeling and intersection, mesh generation, flow simulation, and post-processing of results. Geometry enters into Cart3D in the form of surface triangulations that may be generated from within Computer-Aided Design (CAD) packages, from legacy surface triangulations, or from structured surface grids. Cart3D uses adaptively refined Cartesian grids to discretize the space surrounding geometry, and cuts the geometry out of the set of cut-cells that actually intersects the surface triangulation.

Posted in: Briefs, Software, CAD, CAM, and CAE, Computational fluid dynamics

Improved Digital Map Rendering Method

Software for aeronautics collision avoidance can be used in aerospace satellites, automobiles, scientific research, marine charting systems, and medical devices.

Armstrong Flight Research Center, Edwards, California

Data adaptive algorithms are the critically enabling technology for automatic collision avoidance system efforts at NASA’s Armstrong Flight Research Center. These Armstrong-developed algorithms provide an extensive and highly efficient encoding process for global-scale digital terrain maps (DTMs) along with a real-time decoding process to locally render map data. Available for licensing, these terrain-mapping algorithms are designed to be easily integrated into an aircraft’s existing onboard computing environment, or into an electronic flight bag (EFB) or mobile device application. In addition to its use within next-generation collision avoidance systems, the software can be adapted for use in a wide variety of applications, including aerospace satellites, automobiles, scientific research, marine charting systems, and medical devices.

Posted in: Briefs, Software, Mathematical models, Aircraft displays, Architecture, Terrain, Collision avoidance systems

Interactive Diagnostic Modeling Evaluator

Ames Research Center, Moffett Field, California

NASA’s Ames Research Center has developed an interactive diagnostic modeling evaluator (i-DME) tool to aid in modeling for noise and lag in the data and debugging of system models when fault detection, isolation, and recovery results are incorrect. i-DME is designed to dramatically speed up the modeling debugging process. Often what hinders human-led model developments are 1) the sheer size of playback files, 2) the modeling for noise and lag in the data, and 3) debugging the fault/test relationships in the model. To alleviate these problems, i-DME can automatically play back very large data sets to find time points of interest where userset performance criteria for detection and isolation are violated. i-DME modifies the diagnostic model through its abstract representation, diagnostic matrix (D-matrix). The types of modifications are procedures ranging from modifying 0s and 1s in the D-matrix, adding/removing the rows/columns, or modifying test/wrapper logic used to determine test results. This software has the capacity to be applied to any complex system for navigation or generation of large amounts of complex data to identify, prioritize, and resolve errors in a self-correcting manner.

Posted in: Briefs, Software, Scale models, Computer software and hardware, On-board diagnostics, On-board diagnostics (OBD)

High-Fidelity 3D Electromagnetic (E&M) Propagation Modeling Tools

NASA’s Jet Propulsion Laboratory, Pasadena, California

For a future potential radar sounder mission to small celestial bodies like comets and asteroids, it is important to understand the interaction between propagating waves and interior geophysical structures. In general, it is not easy to build a software model capable of handling relevant dimensions with high numerical accuracy. Researchers often rely on a scaled-down model that cannot fully represent physical phenomena.

Posted in: Briefs, Software, Computer simulation, Radar, Spacecraft

System and Method for Transferring Telemetry Data Between a Ground Station and a Control Center

Goddard Space Flight Center, Greenbelt, Maryland

The Lunar Reconnaissance Orbiter (LRO) employs many advanced innovations developed at NASA’s Goddard Space Flight Center and in collaboration with other organizations. The applications and benefits for these technologies are advantageous for many other industries as well. One of those technologies is the Space Link Extension Return Channel Frames (SLE-RCF) software library. This software library enables a mission control center to receive telemetry frames from a ground station. The technology implements the SLE-RCF protocol as defined by the Consultative Committee for Space Data Systems (CCSDS). Software routines can be reused from mission to mission.

Posted in: Briefs, Electronics & Computers, Electronics & Computers, Software, Communication protocols, Data exchange, Satellite communications, Telemetry

Method and Apparatus for Generating Flight-Optimizing Trajectories

Flight path and altitude modifications are pre-cleared of potential conflicts with other known airplane traffic, weather hazards, and airspace restrictions.

Langley Research Center, Hampton, Virginia

NASA’s Langley Research Center is developing Traffic Aware Strategic Aircrew Requests (TASAR). TASAR features a cockpit automation system that monitors for potential flight trajectory improvements and displays them to the pilot. These wind-optimized flight trajectory changes are pre-cleared of potential conflicts with other known airplane traffic, weather hazards, and airspace restrictions. The TASAR is to improve the process in which pilots request flight path and altitude modifications due to changing flight conditions. Changes may be made to reduce flight time, increase fuel efficiency, or improve some other flight attribute desired by the operator. Currently, pilots make such requests to air traffic control (ATC) with limited awareness of what is happening around them. Consequently, some of these requests will be denied resulting in no flight improvements and an unnecessary workload increase for both pilots and ATC. The TASAR technology provides pilots with recommended flight path and altitude improvements that are more likely to be approved by ATC.

Posted in: Briefs, Electronics & Computers, Software, Trajectory control, Displays, Air traffic control

Systems, Methods, and Apparatus for Developing and Maintaining Evolving Systems with Software Product Lines

Goddard Space Flight Center, Greenbelt, Maryland

Physical manufacturers have been taking advantage of mass manufacturing ideas for a long time, increasing their productivity, cutting their costs, and ensuring the quality and uniformity of their products. Now, this idea is being applied to software production so the same benefits can be reaped in that field.

Posted in: Briefs, Electronics & Computers, Software, Computer software and hardware, Productivity

Team Electronic Gameplay Combining Different Means of Control

Applications include biofeedback equipment, physical therapy, athletic training, and mind-body medicine.

Langley Research Center, Hampton, Virginia

NASA’s Langley Research Center has developed a technology at the forefront of a new generation of computer and video game environments that trains valuable mental skills, beyond eye-hand coordination, for the personal improvement, not just the diversion, of the user.

Posted in: Briefs, Electronics & Computers, Software, Computer software and hardware, Human machine interface (HMI), Reaction and response times, Education, Education and training

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.