Home

FEA Software Enables Study of Tissue Ablation Dynamics

An improved ablation device model uses a feedback loop to account for varying properties of heated or damaged tissue. Regulatory agencies such as the US FDA must examine new medical devices to ensure that they are safe and effective. Sometimes, devices work successfully despite the fact that the mechanism of how they work isn't fully understood. In these cases, the FDA performs basic research to fill in these knowledge gaps.

Posted in: Medical, Briefs

Read More >>

Finite Element Analysis Used to Examine the Healing of Animal Bones

The effectiveness of using stabilization pins and external skeletal fixators was determined by FEA analysis. When a dog or cat breaks a bone, veterinarians often mend the fracture with a combination of stabilization devices called intra-medullary (IM) pins and external skeletal fixators (ESFs), a technique that is employed daily across the U.S. Research conducted at the University of Georgia under the direction of Dennis Aron, DVM, using ALGOR finite element analysis software, is helping to establish better guidelines for how these stabilization devices can best be used to promote healing of animal fractures.

Posted in: Medical, Briefs

Read More >>

Multisensor Instrument for Real-Time Biological Monitoring

Multiple parameters can be measured simultaneously by use of a single compact sensor head. The figure schematically depicts an instrumentation system, called a "fiber optic-based integration system" (FOBIS), that is undergoing development to enable real-time monitoring of fluid cell cultures, bioprocess flows, and the like. The FOBIS design combines a micro flow cytometer (MFC), a microphotometer (MP), and a fluorescence-spectrum- or binding-force-measuring micro-sensor (MS) in a single instrument that is capable of measuring multiple biological parameters simultaneously or sequentially. The fiber-optic-based integration system is so named because the MFC, the MP, and the MS are integrated into a single optical system that is coupled to light sources and photometric equipment via optical fibers. The optical coupling components also include a wavelength-division multiplexer and diffractive optical elements. The FOBIS includes a laser-diode- and fiber-optic-based optical trapping subsystem ("optical tweezers") with microphotometric and micro-sensing capabilities for noninvasive confinement and optical measurement of relevant parameters of a single cell or other particle.

Posted in: Bio-Medical, Medical, Briefs, TSP

Read More >>

Spore-Forming Bacteria That Resist Sterilization

A report presents a phenotypic and genotypic characterization of a bacterial species that has been found to be of the genus Bacillus and has been tentatively named B. odysseensis because it was isolated from surfaces of the Mars Odyssey spacecraft as part of continuing research on techniques for sterilizing spacecraft to prevent contamination of remote planets by terrestrial species. B. odysseensis is a Gram-positive, facultatively anaerobic, rod-shaped bacterium that forms round spores. The exosporium has been conjectured to play a role in the elevated resistance to sterilization. Research on the exosporium is proposed as a path toward improved means of sterilization, medical treatment, and prevention of biofouling.

Posted in: Medical, Briefs, TSP

Read More >>

Fluorescent Quantum Dots for Biological Labeling

Fluorescence is effectively turned on by enzymes specific to cells of interest. Fluorescent semiconductor quantum dots that can serve as "on/off" labels for bacteria and other living cells are undergoing development. The "on/off" characterization of these quantum dots refers to the fact that, when properly designed and manufactured, they do not fluoresce until and unless they come into contact with viable cells of biological species that one seeks to detect. In comparison with prior fluorescence-based means of detecting biological species, fluorescent quantum dots show promise for greater speed, less complexity, greater sensitivity, and greater selectivity for species of interest. There are numerous potential applications in medicine, environmental monitoring, and detection of bioterrorism.

Posted in: Medical, Briefs

Read More >>

Growing Three-Dimensional Corneal Tissue in a Bioreactor

This method could help overcome the shortage of donated corneal tissue. Spheroids of corneal tissue about 5 mm in diameter have been grown in a bioreactor from an in vitro culture of primary rabbit corneal cells to illustrate the production of optic cells from aggregates and tissue. In comparison with corneal tissues previously grown in vitro by other techniques, this tissue approximates intact corneal tissue more closely in both size and structure. This novel three-dimensional tissue can be used to model cell structures and functions in normal and abnormal corneas. Efforts continue to refine the present in vitro method into one for producing human corneal tissue to overcome the chronic shortage of donors for corneal transplants: The method would be used to prepare corneal tissues, either from in vitro cultures of a patient's own cells or from a well-defined culture from another human donor known to be healthy.

Posted in: Medical, Briefs

Read More >>

Exercise Device Would Exert Selectable Constant Resistance

An apparatus called the resistive exercise device (RED) has been proposed to satisfy a requirement for exercise equipment aboard the International Space Station (ISS) that could passively exert a selectable constant load on both the outward and return strokes. The RED could be used alone; alternatively, the RED could be used in combination with another apparatus called the treadmill with vibration isolation and stabilization (TVIS), in which case the combination would be called the subject load device (SLD). The basic RED would be a passive device, but it could incorporate an electric motor to provide eccentric augmentation (augmentation to make the load during inward movement greater than the load during outward movement). The RED concept represents a unique approach to providing a constant but selectable resistive load for exercise for the maintenance and development of muscles. Going beyond the original ISS application, the RED could be used on Earth as resistive weight training equipment. The advantage of the RED over conventional weight-lifting equipment is that it could be made portable and lightweight.

Posted in: Medical, Briefs

Read More >>