Home

Noninvasive Diagnosis of Coronary Artery Disease Using 12-Lead High-Frequency Electrocardiograms

Diagnostically significant signal features can be identified automatically by computational analysis. A noninvasive, sensitive method of diagnosing certain pathological conditions of the human heart involves computational processing of digitized electrocardiographic (ECG) signals acquired from a patient at all 12 conventional ECG electrode positions. In the processing, attention is focused on low-amplitude, high-frequency components of those portions of the ECG signals known in the art as QRS complexes. The unique contribution of this method lies in the utilization of signal features and combinations of signal features from various combinations of electrode positions, not reported previously, that have been found to be helpful in diagnosing coronary artery disease and such related pathological conditions as myocardial ischemia, myocardial infarction, and congestive heart failure.

Posted in: Briefs

Read More >>

Multichannel Brain-Signal-Amplifying and Digitizing System

An apparatus has been developed for use in acquiring multichannel electroencephalographic (EEG) data from a human subject. EEG apparatuses with many channels in use heretofore have been too heavy and bulky to be worn, and have been limited in dynamic range to no more than 18 bits. The present apparatus is small and light enough to be worn by the subject. It is capable of amplifying EEG signals and digitizing them to 22 bits in as many as 150 channels. The apparatus is controlled by software and is plugged into the USB port of a personal computer. This apparatus makes it possible, for the first time, to obtain high-resolution functional EEG images of a thinking brain in a real-life, ambulatory setting outside a research laboratory or hospital.

Posted in: Briefs

Read More >>

Multistage Magnetic Separator of Cells and Proteins

Purifications and separations can be carried to higher degrees than were previously possible. The multistage electromagnetic separator for purifying cells and magnetic particles (MAGSEP) is a laboratory apparatus for separating and/or purifying particles (especially biological cells) on the basis of their magnetic susceptibility and magnetophoretic mobility. Whereas a typical prior apparatus based on similar principles offers only a single stage of separation, the MAGSEP, as its full name indicates, offers multiple stages of separation; this makes it possible to refine a sample population of particles to a higher level of purity or to categorize multiple portions of the sample on the basis of magnetic susceptibility and/or magnetophoretic mobility.

Posted in: Briefs, TSP

Read More >>

Radiation Dosimetry via Automated Fluorescence Microscopy

With further development, this instrument could enable biodosimetry on a large scale. A developmental instrument for assessment of radiation-induced damage in human lymphocytes includes an automated fluorescence microscope equipped with a one or more charge coupled device (CCD) video camera(s) and circuitry to digitize the video output. The microscope is also equipped with a three-axis translation stage that includes a rotation stage, and a rotary tray that holds as many as thirty specimen slides. The figure depicts one version of the instrument. Once the slides have been prepared and loaded into the tray, the instrument can operate unattended. A computer controls the operation of the stage, tray, and microscope, and processes the digital fluorescence image data to recognize and count chromosomes that have been broken, presumably by radiation.

Posted in: Briefs

Read More >>

Elastic-Tether Suits for Artificial Gravity and Exercise

Body suits harnessed to systems of elastic tethers have been proposed as means of approximating the effects of normal Earth gravitation on crewmembers of spacecraft in flight to help preserve the crewmembers’ physical fitness. The suits could also be used on Earth to increase effective gravitational loads for purposes of athletic training. The suit according to the proposal would include numerous small tetherattachment fixtures distributed over its outer surface so as to distribute the artificial gravitational force as nearly evenly as possible over the wearer’s body. Elastic tethers would be connected between these fixtures and a single attachment fixture on a main elastic tether that would be anchored to a fixture on or under a floor. This fixture might include multiple pulleys to make the effective length of the main tether great enough that normal motions of the wearer cause no more than acceptably small variations in the total artificial gravitational force. Among the problems in designing the suit would be equalizing the load in the shoulder area and keeping tethers out of the way below the knees to prevent tripping. The solution would likely include running tethers through rings on the sides. Body suits with a weight or water ballast system are also proposed for very slight spinning space-station scenarios, in which cases the proposed body suits will easily be able to provide the equivalency of a 1-G or even greater load.

Posted in: Briefs

Read More >>

Chamber for Growing and Observing Fungi

A chamber has been designed to enable growth and observation of microcolonies of fungi in isolation from the external environment. Unlike prior fungus growing apparatuses, this chamber makes it possible to examine a fungus culture without disrupting it. Partly resembling a small picture frame, the chamber includes a metal plate having a rectangular through the thickness opening with recesses for a top and a bottom cover glass, an inlet for air, and an inlet for water. The bottom cover glass is put in place and held there by clips, then a block of nutrient medium and a moisture pad are placed in the opening. The block is inoculated, then the top cover glass is put in place and held there by clips. Once growth is evident, the chamber can be sealed with tape. Little (if any) water evaporates past the edges of the cover glasses, and, hence there is little (if any) need to add water. A microscope can be used to observe the culture through either cover glass. Because the culture is sealed in the chamber, it is safe to examine the culture without risking contamination. The chamber can be sterilized and reused.

Posted in: Briefs

Read More >>

Electroporation System for Sterilizing Water

Amounts of chemicals needed for sterilization are reduced. A prototype of an electroporation system for sterilizing wastewater or drinking water has been developed. In electroporation, applied electric fields cause transient and/or permanent changes in the porosities of living cells. Electroporation at lower field strengths can be exploited to increase the efficiency of chemical disinfection (as in chlorination). Electroporation at higher field strengths is capable of inactivating and even killing bacteria and other pathogens, without use of chemicals. Hence, electroporation is at least a partial alternative to chlorination.

Posted in: Briefs

Read More >>