Home

Fluorescent Quantum Dots for Biological Labeling

Fluorescence is effectively turned on by enzymes specific to cells of interest. Fluorescent semiconductor quantum dots that can serve as "on/off" labels for bacteria and other living cells are undergoing development. The "on/off" characterization of these quantum dots refers to the fact that, when properly designed and manufactured, they do not fluoresce until and unless they come into contact with viable cells of biological species that one seeks to detect. In comparison with prior fluorescence-based means of detecting biological species, fluorescent quantum dots show promise for greater speed, less complexity, greater sensitivity, and greater selectivity for species of interest. There are numerous potential applications in medicine, environmental monitoring, and detection of bioterrorism.

Posted in: Medical, Briefs, TSP

Read More >>

Growing Three-Dimensional Corneal Tissue in a Bioreactor

This method could help overcome the shortage of donated corneal tissue. Spheroids of corneal tissue about 5 mm in diameter have been grown in a bioreactor from an in vitro culture of primary rabbit corneal cells to illustrate the production of optic cells from aggregates and tissue. In comparison with corneal tissues previously grown in vitro by other techniques, this tissue approximates intact corneal tissue more closely in both size and structure. This novel three-dimensional tissue can be used to model cell structures and functions in normal and abnormal corneas. Efforts continue to refine the present in vitro method into one for producing human corneal tissue to overcome the chronic shortage of donors for corneal transplants: The method would be used to prepare corneal tissues, either from in vitro cultures of a patient's own cells or from a well-defined culture from another human donor known to be healthy.

Posted in: Medical, Briefs

Read More >>

Exercise Device Would Exert Selectable Constant Resistance

An apparatus called the resistive exercise device (RED) has been proposed to satisfy a requirement for exercise equipment aboard the International Space Station (ISS) that could passively exert a selectable constant load on both the outward and return strokes. The RED could be used alone; alternatively, the RED could be used in combination with another apparatus called the treadmill with vibration isolation and stabilization (TVIS), in which case the combination would be called the subject load device (SLD). The basic RED would be a passive device, but it could incorporate an electric motor to provide eccentric augmentation (augmentation to make the load during inward movement greater than the load during outward movement). The RED concept represents a unique approach to providing a constant but selectable resistive load for exercise for the maintenance and development of muscles. Going beyond the original ISS application, the RED could be used on Earth as resistive weight training equipment. The advantage of the RED over conventional weight-lifting equipment is that it could be made portable and lightweight.

Posted in: Medical, Briefs

Read More >>

Simulation of MEMS Piezoelectric Micropump for Biomedical Applications

University of Alberta uses simulation software for multiphysics analysis. Since the advent of Micro Electro Mechanical Systems (MEMS) technology, microfabrication methods have been used to manufacture a wide range of miniature pumps. These micropumps find their greatest use in chemical and biomedical applications requiring the transport of small, accurately measured liquid quantities. When utilized in chemical applications, micropumps are often a component of a lab-on-a-chip device. Such devices are envisioned as providing for reasonably inexpensive, possibly even disposable, means to conduct laboratory experiments.

Posted in: Bio-Medical, Medical, Briefs

Read More >>

Real-Time, High-Frequency QRS Electrocardiograph

Signals indicative of ischemia or infarction can be identified in real time. An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies

Posted in: Medical, Briefs, TSP

Read More >>

Time-Resolved Measurements in Optoelectronic Microbioanalysis

A report presents discussion of time-resolved measurements in optoelectronic microbioanalysis. Proposed microbioanalytical "laboratory-on-a-chip" devices for detection of microbes and toxic chemicals would include optoelectronic sensors and associated electronic circuits that would look for fluorescence or phosphorescence signatures of multiple hazardous biomolecules in order to detect which ones were present in a given situation. The emphasis in the instant report is on gating an active-pixel sensor in the time domain, instead of filtering light in the wavelength domain, to prevent the sensor from responding to a laser pulse used to excite fluorescence or phosphorescence while enabling the sensor to respond to the decaying fluorescence or phosphorescence signal that follows the laser pulse. The active-pixel sensor would be turned on after the laser pulse and would be used to either integrate the fluorescence or phosphorescence signal over several lifetimes and many excitation pulses or else take time-resolved measurements of the fluorescence or phosphorescence. The report also discusses issues of multiplexing and of using time-resolved measurements of fluorophores with known different fluorescence lifetimes to distinguish among them.

Posted in: Medical, Briefs, TSP

Read More >>

Growth Conditions To Reduce Oxalic Acid Content of Spinach

A controlled environment agricultural (CEA) technique to increase the nutritive value of spinach has been developed. This technique makes it possible to reduce the concentration of oxalic acid in spinach leaves. It is desirable to reduce the oxalic acid content because oxalic acid acts as an anti-nutritive calcium-binding component. More than 30 years ago, an enzyme (an oxidase) that breaks down oxalic acid into CO2 and H2O2 was discovered and found to be naturally present in spinach leaves. However, nitrate, which can also be present because of the use of common nitrate-based fertilizers, inactivates the enzyme. In the CEA technique, one cuts off the supply of nitrate and keeps the spinach plants cool while providing sufficient oxygen. This technique provides the precise environment that enables the enzyme to naturally break down oxalate. The result of application of this technique is that the oxalate content is reduced by 2/3 in one week.

Posted in: Medical, Briefs

Read More >>