Home

Method and Apparatus for Performance Optimization Through Physical Perturbation of Task Elements

This technology can be used in sports psychology, marksmanship training, video gaming, and special forces training.NASA’s Langley Research Center has developed ZONE, an innovative method for improving athletes’ responses to stress, anxiety, and loss of concentration during competition. In the training environment, when the user successfully attains an optimal target state of psychophysiological functioning, the technology informs and/or rewards that user through real-time physical changes in the athletic equipment. For example, in the training setting, a golfer can work toward optimal concentration in the act of putting, leading to improved performance in real situations.

Posted in: Briefs, Bio-Medical, Medical

Read More >>

Portable Medical Diagnosis Instrument

Four cutting-edge sensor technologies enable minimally or non-invasive analysis of various biological samples.NASA has developed a novel technology strategy called “The NASA Analyzer” that would provide comprehensive in-flight medical diagnostic capability in a compact, handheld device for human deep-space missions such as Mars. Key features of the technology include the ability to handle multiple sample types (breath, saliva, blood), and the ability to measure virtually any analyte, including future analytes as they emerge. The device provides both non-invasive and minimally invasive sampling capabilities, which will be required during long-duration exploration missions. Breath and saliva are fully non-invasive and can provide critical health assessment information very rapidly. From small blood samples, information about macromolecular analytes, as well as blood cell counts, can be obtained. The device consists of four cutting-edge technologies integrated into a single, compact medical diagnostic tool with wireless (e.g., smartphone) capability. In addition to space applications, this innovative technology will very likely have important spinoffs in medicine and public health on Earth.

Posted in: Briefs, Bio-Medical, Medical

Read More >>

A Simplified Production of Organic Compounds Containing High Enantiomer Excesses

NASA has developed a novel approach for producing sugars and sugar acids enriched with one of the two enantiomers of individual compounds. This approach can also be adapted for other compounds, such as amino acids. All objects, including chemical compounds, have mirror images, some of which cannot be superimposed. In the case of chemical compounds, these non-superimposable mirror images are called enantiomers and are widely used in biological processes. NASA’s method produces high enantiomer excesses from simple and relatively inexpensive precursors (formaldehyde and simple salts) and hardware components without the need and expense of using (at some stage) biological sources. Unlike the commercial production of most rare enantiomers, this innovation employs conditions that are extremely common, non-biological, and relatively inexpensive to set up.

Posted in: Briefs, Medical

Read More >>

Generation of High-Pressure Oxygen Via Electrochemical Pumping in a Multi-Stage Electrolysis Stack

Innovators at NASA’s Glenn Research Center have developed a method for producing pure high-pressure oxygen via an electrochemical pumping process through a solid oxide electrolysis (SOE) cell stack. Glenn’s device can either concentrate the oxygen in the ambient atmosphere or extract the oxygen via the chemical reduction of carbon dioxide, water, or any combination of these substances. This solid-state device does not use any moving parts or any extra separation processes to purify the delivered oxygen. Instead, Glenn’s technology relies on a multi-stage stack design and an SOE process that includes an oxygen-ion-conducting ceramic membrane to generate high-pressure oxygen within a compact, noiseless device. This process has great potential for use in medical, industrial, and recreational applications.

Posted in: Briefs, Medical

Read More >>

Tension Distribution in Tendon-Driven Fingers

The technology can be used in telemedicine, surgical robotics, home medical service robotics, medical rehabilitation, and hospital service robotics. Researchers at the NASA Johnson Space Center (JSC), in collaboration with General Motors and Oceaneering, have designed a state-of-the-art, highly dexterous, humanoid robot called Robonaut 2 (R2). R2 is made up of multiple component technologies and systems encompassing nearly 50 patented and patent-pending technologies with the potential to be game-changers in multiple industries, including the medical industry. R2 technologies can aid in a variety of medical applications, ranging from telemedicine to handling the logistics of medical procedures. These activities can be done in autonomous mode or in teleoperation mode, where the robot is controlled by a technician or physician. This type of operation would be advantageous in situations where a biomedical hazard poses risks to humans, such as a contagious outbreak or a combat situation. For more routine daily use, R2 could function as an assistant to the hospital staff.

Posted in: Briefs, Medical

Read More >>

Rapid Polymer Sequencer

Solid-state nanopore-based analysis of nucleic acid polymers is revolutionary. No other technique can determine information content in single molecules of genetic material at speeds of 1 subunit per microsecond. Since individual molecules are counted, the output is intrinsically quantitative. The nanopore approach is more generalized than any other method and may be used to analyze any polymer molecule, applying nanofabrication, nanoelectronic components, and high-speed signal acquisition. Geometry of the solid-state nanopore (less than 5 nm in length and 5 nm in diameter) will enable 1-5 nucleotide resolution measurements. This means that maximum resolution will be improved by 100-fold compared to biological ion-channel measurements. The solid-state nanopore sensor will permit sequencing DNA at a much faster rate, along with analyzing electronic properties of individual subunits of DNA or RNA, to obtain linear composition of each genetic polymer molecule.

Posted in: Briefs, Medical

Read More >>

Computer-Controlled Solid-State Lighting Assembly to Emulate Diurnal Cycle and Improve Circadian Rhythm Control

John F. Kennedy Space Center, Florida The Lighting System to Improve Circadian Rhythm Control was designed and built to help regulate the sleep cycles of astronauts working on the International Space Station (ISS) and during long-duration spaceflight. In space, the lack of a true diurnal cycle of sunlight, encompassing the same range of color temperatures and intensities of sunlight experienced on Earth, is one of the potential causes of sleep disorders among the crew aboard ISS. The production of melatonin, a hormone that helps regulate sleep cycles, can be inhibited by light, especially cool white light (with its large blue light component). To help regulate sleep cycles and improve the quality of sleep for the crew, control of the melatonin production cycle through the use of light is key. On Earth, this technology can be used to help treat many sleep disorders, including jet lag, shift work sleep disorder, delayed sleep phase syndrome, advance sleep phase syndrome, and non-24-hour sleep/wake disorder (frequently affects those who are totally blind since the circadian clock is set by the light-dark cycle over a 24-hour period).

Posted in: Briefs, Medical

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.