Roof Tiles Clean the Air

A team of University of California, Riverside’s Bourns College of Engineering students has developed a titanium dioxide roof tile coating that removes up to 97 percent of smog-causing nitrogen oxides.The students' calculations show that 21 tons of nitrogen oxides would be eliminated daily if tiles on one million roofs were coated with their titanium dioxide mixture. The researchers coated two identical, off-the-shelf clay tiles with different amounts of titanium dioxide, a common compound found in everything from paint to food to cosmetics. The tiles were then placed inside a miniature atmospheric chamber that the students built out of wood, Teflon, and PVC piping.The chamber was connected to a source of nitrogen oxides and a device that reads concentrations of nitrogen oxides. The students used ultraviolet light to simulate sunlight, which activates the titanium dioxide and allows it to break down the nitrogen oxides. They found the titanium dioxide coated tiles removed between 88 percent and 97 percent of the nitrogen oxides.SourceAlso: Learn about Spectroscopic Determination of Trace Contaminants in High-Purity Oxygen.

Posted in: News, Remediation Technologies, Coatings & Adhesives


NASA Balloons Study Effects of Volcanic Eruption

A team of NASA and University of Wyoming scientists has ventured into the Australian bush to send a series of balloons aloft. The balloons will make measurements of a volcanic plume originating from neighboring Indonesia.The campaign, in Australia’s Northern Territory, is part of an effort to better understand the climate effects of volcanic eruptions.The KlAsh (Kelud Ash) experiment is based in Darwin, Australia, where smaller balloon payloads are being launched over the Indian Ocean. Larger balloons, with payloads that must be recovered, are being launched from Corroboree, a remote area about 60 miles south of Darwin.The larger balloon, filled with helium, measures about 115 by 65 feet when fully inflated.Almost all of the energy entering Earth’s climate system comes from the sun. Some of that energy is absorbed by the planet, while the rest is radiated back into space. Ash and sulfate reflect and absorb energy differently, and may also have different chemical impacts on the stratosphere.“Understanding those characteristics is important for climate models that include periodic volcanic activity,” said Terry Deshler, principal investigator for the University of Wyoming’s instrumentation.SourceAlso: Learn about Targeting and Monitoring of Volcanic Activity.

Posted in: News, Environmental Monitoring, Monitoring


New Rotary Sensor Keeps Conveyor Belts Running Smoothly

Rotary sensors can help determine the position of a moveable body in relation to an axis. They are essential to the smooth running of car engines in the automotive industry, for example. In factories, goods and products are transported from one processing station to the next via conveyor belt. For the transfer from one belt to the next to run smoothly, it must take place precisely at a specific position, which means knowing the relative position of objects on the conveyor belts as they move towards each other. This can be determined from the angle of rotation, which refers to the position of a moveable body to an axis.

Posted in: News, Electronic Components, Consumer Product Manufacturing, Industrial Controls & Automation, Optics, Photonics, Sensors, Measuring Instruments


GPS Tide Gauge Measures Sea Level Change

Using radio signals from satellite navigation systems, Scientists at Chalmers Department of Earth and Space Sciences have developed and tested a Global Navigation Satellite System (GNSS) tide gauge, an instrument that measures the sea level.The GNSS tide gauge uses radio signals from satellites in orbit around the Earth that are part of satellite navigation systems like GPS and Glonass (Russia’s equivalent of GPS).Two antennas, covered by small white radomes, measure signals both directly from the satellites and signals reflected off the sea surface. By analyzing these signals together, the sea level and its variation can be measured, up to 20 times per second.”We measure the sea level using the same radio signals that mobile phones and cars use in their satellite navigation systems,” says researcher Johan Löfgren. “As the satellites pass over the sky, the instrument ‘sees’ their signals – both those that come direct and those that are reflected off the sea surface.” SourceAlso: Learn about Global Positioning System (GPS) Meteorology.

Posted in: News, Environmental Monitoring, Antennas, Measuring Instruments


Unmanned Aircraft Tested as Tool for Measuring Polar Ice Sheets

Scientists studying the behavior of the world's ice sheets — and the future implications of ice sheet behavior for global sealevel rise — may soon have a new airborne tool that will allow radar measurements that previously would have been prohibitively expensive or difficult to carry out with manned aircraft.

Posted in: News, Aviation, Environmental Monitoring, Measuring Instruments, Monitoring


OCULLAR Provides Around-the-Clock Ocean Measurements

A team led at NASA's Goddard Space Flight Center in Greenbelt, Md., has developed an instrument capable of observing ocean color during normal sunlight conditions and under moonlight — a first-ever capability that will allow scientists to monitor the health and chemistry of the planet’s oceans literally around the clock.The prototype Ocean Color Underwater Low Light Advanced Radiometer (OCULLAR) has shown in field testing that it can measure ocean color under low-light conditions across multiple wavelength bands, from the ultraviolet to the near-infrared. In contrast, current remote-sensing instruments can obtain measurements — based on electromagnetic energy emitted by the sun, transmitted through the atmosphere, reflected off Earth’s surface, or upwelled from water masses — only during daylight hours, said Principal Investigator Stan Hooker.Of particular interest to scientists studying ocean color is phytoplankton, the microscopic ocean plants that form the base of the oceanic food web. The tiny plants use sunlight and carbon dioxide to produce organic carbon. This process, called photosynthesis, is possible because plants contain chlorophyll, green-colored compounds that trap the energy from sunlight. Because different types of phytoplankton contain different kinds of chlorophyll, measuring the color of a particular area allows scientists to estimate the amount and general type of phytoplankton there. Since phytoplankton also depend on specific conditions for growth, they frequently become the first to be affected by pollution or some other change in their environment.Until now, however, obtaining these measurements was limited to daylight hours and only during the spring, summer and fall months in the polar regions — a problem Hooker sought to correct with OCULLAR. The successful OCULLAR demonstration leads the way to anticipated commercialization and creates a new capability for oceanographers, climate scientists, and others interested in quantifying, understanding, and monitoring the biological productivity of oceans, coastal areas, and inland waters.SourceAlso: Learn about a Data Assimilation System for Coastal Ocean Prediction.

Posted in: News, Environmental Monitoring, Photonics, Measuring Instruments, Monitoring


NASA Simulator Recreates Space Dust

A team of scientists at NASA's Ames Research Center in Moffett Field, California, has successfully reproduced, on Earth, the processes that occur in the atmosphere of a red giant star and lead to the formation of planet-forming interstellar dust.Using a specialized facility, called the Cosmic Simulation Chamber (COSmIC), scientists now are able to recreate and study dust grains similar to the grains that form in the outer layers of dying stars. Scientists plan to use the dust to gather clues to better understand the composition and the evolution of the universe.In the past, the inability to simulate space conditions in the gaseous state prevented scientists from identifying unknown matter. Because conditions in space are vastly different from conditions on Earth, it is challenging to identify extraterrestrial materials. Thanks to COSmIC, researchers can successfully simulate gas-phase environments similar to interstellar clouds, stellar envelopes, or planetary atmospheres environments by expanding gases using a cold jet spray of argon gas seeded with hydrocarbons that cools down the molecules to temperatures representative of these environments.COSmIC integrates a variety of state-of-the-art instruments to allow scientists to recreate space conditions in the laboratory to form, process, and monitor simulated planetary and interstellar materials. The chamber is the heart of the system. It recreates the extreme conditions that reign in space where interstellar molecules and ions float in a vacuum at densities that are billionths of Earth's atmosphere.SourceAlso: Learn about Coatings for Lunar Dust Removal.

Posted in: News, Monitoring