Home

HEIST Ironbird to Test Cutting-Edge Hybrid Electric Propulsion Technologies

Testbed will study the system complexities of powering an aircraft with two different power sources.A key goal of NASA’s aeronautics research is to help the aircraft industry transition to low-carbon propulsion. Many potential power architectures for electric propulsion have been proposed, and design considerations for turbo-electric distributed propulsion have been studied. However, few mid- to full-scale testbeds have been built to validate these different architectures.

Posted in: Briefs, Test & Measurement

Read More >>

Saturn Net Flux Radiometer (SNFR)

A Saturn Net Flux Radiometer (SNFR) is being developed as part of a payload for a future NASA-led Saturn Probe Mission. The current design has two spectral channels i.e., a solar channel (0.4-to-5 μm) and a thermal channel (4-to-50 μm). The SNFR is capable of viewing five distinct viewing angles during the descent. Non-imaging Winston cones with window and filter combinations define the spectral channels, each with a 5° field-of-view. Un - cooled thermopile detectors are used in each spectral channel and are read out using a custom-designed Application Specific Integrated Circuit (ASIC). The SNFR measures the radiative energy anisotropies with altitude. In the solar channel, the downward flux will determine the solar energy deposition profile and the upward flux will yield information about cloud particle absorption and scattering. In the thermal channel, the net flux will define sources and sinks of planetary radiation. In conjunction with calculated gas and particulate opacities, these observations will determine the atmosphere’s radiative balance.

Posted in: Briefs, Test & Measurement

Read More >>

Applying the Dynamic Inertia Measurement Method to Full-Scale Aerospace Vehicles

Researchers have begun testing on large articles in conjunction with ground vibration tests.Researchers at NASA’s Armstrong Flight Research Center have been interested in using the Dynamic Inertia Measurement (DIM) method on full-scale aerospace test vehicles, given its advantages over traditional methods for determining the mass properties of such vehicles. Developed at the University of Cincinnati, the DIM method uses a ground vibration test setup to determine mass properties using data from frequency-response functions. The method has been successfully tested on a number of small-scale test articles — including automobile brake rotors, steel blocks, and custom fixtures — but until now, has had limited success being tested in larger applications. Armstrong’s recent efforts, in conjunction with ground vibration tests, represent a step forward in applying the DIM method successfully to full-scale aerospace vehicles.

Posted in: Briefs, Test & Measurement

Read More >>

Modules for Inspection, Qualification, and Verification of Pressure Vessels

This automated, modular, standardized system features interchangeable probes.After decades of composite over-wrapped pressure vessel (COPV) development, manufacturing variance is still high, and has necessitated higher safety factors and additional mass to be flown on spacecraft, reducing overall performance. When liners are used in COPVs, they need to be carefully screened before wrapping. These flaws can go undetected and later grow through the thickness of the liner, causing the liner to fail, resulting in a massive leakage of the liner and subsequent mission loss.

Posted in: Briefs, Test & Measurement

Read More >>

In-Flight Pitot-Static Calibration

This precise yet time- and cost-effective method is based on GPS technology using output error optimization.NASA’s Langley Research Center has developed a new method for calibrating pitot-static air data systems used in aircraft. Pitot-static systems are pressure-based instruments that measure the aircraft’s airspeed. These systems must be calibrated in flight to minimize potential error. Current methods — including trailing cone, tower fly-by, and pacer airplane — are time- and cost-intensive, requiring extensive flight time per calibration. NASA’s method can reduce this calibration time by up to an order of magnitude, cutting a significant fraction of the cost. In addition, NASA’s calibration method enables near-real-time monitoring of error in airspeed measurements, which can be used to alert pilots when airspeed instruments are inaccurate or failing. Because of this feature, the technology also has applications in the health usage and monitoring (HUMS) industry. Flight test engineers can be trained to use this method proficiently in 12 days without costly specialized hardware.

Posted in: Briefs, Test & Measurement

Read More >>

Choosing the Right Hardware for Testing in Harsh Environments

Testing in rugged applications often includes testing in extreme temperature ranges, which can add constraints to hardware. Cold-start engine testing, for example, uses a test cell that can drop to -40 °C and requires continuous data acquisition such as temperature, pressure, and other various measurements. Placing hardware that is not built to withstand this range into harsh environments can cause components within the hardware to work incorrectly and result in incorrect data or damage to the hardware.

Posted in: Articles, Test & Measurement

Read More >>

Keysight Technologies Engineering Education and Research Resources DVD 2016

Keysight is enabling the next generation of engineers to tackle and solve the toughest electronic design and test challenges. With 200 new items in areas relating to education and research (Software Design & Simulation Solutions; Communications Technology; Test & Measurement Science; Nanotechnology & Material Measurement; Power, Energy & Automotive; and Classroom Applications), it includes application notes, white papers, case studies, videos, webcasts, and details on various Keysight solutions. Order your DVD today!    

Posted in: White Papers, Electronics & Computers, RF & Microwave Electronics, Test & Measurement

Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.